Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
e5cccd39
Commit
e5cccd39
authored
Jun 11, 2021
by
郭羽
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
美购精排模型耗时优化
parent
4ad672a6
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
47 additions
and
29 deletions
+47
-29
featureeng_export.sh
shell/featureeng_export.sh
+1
-1
service_train.sh
shell/service_train.sh
+2
-1
featureEng.py
spark/featureEng.py
+41
-6
train_service.py
train/train_service.py
+3
-21
No files found.
shell/featureeng_export.sh
View file @
e5cccd39
...
...
@@ -6,4 +6,4 @@ pythonFile=${path}/spark/featureEng.py
#log_file=~/${content_type}_feature_csv_export.log
/opt/hadoop/bin/hdfs dfs
-rmr
/
${
content_type
}
_feature_v1_train
/opt/hadoop/bin/hdfs dfs
-rmr
/
${
content_type
}
_feature_v1_test
/opt/spark/bin/spark-submit
--master
yarn
--deploy-mode
client
--queue
root.strategy
--driver-memory
16
g
--executor-memory
2g
--executor-cores
1
--num-executors
8
--conf
spark.default.parallelism
=
100
--conf
spark.storage.memoryFraction
=
0.5
--conf
spark.shuffle.memoryFraction
=
0.3
--conf
spark.locality.wait
=
0
--jars
/srv/apps/tispark-core-2.1-SNAPSHOT-jar-with-dependencies.jar,/srv/apps/spark-connector_2.11-1.9.0-rc2.jar,/srv/apps/mysql-connector-java-5.1.38.jar
${
pythonFile
}
$day_count
/opt/spark/bin/spark-submit
--master
yarn
--deploy-mode
client
--queue
root.strategy
--driver-memory
4
g
--executor-memory
2g
--executor-cores
1
--num-executors
8
--conf
spark.default.parallelism
=
100
--conf
spark.storage.memoryFraction
=
0.5
--conf
spark.shuffle.memoryFraction
=
0.3
--conf
spark.locality.wait
=
0
--jars
/srv/apps/tispark-core-2.1-SNAPSHOT-jar-with-dependencies.jar,/srv/apps/spark-connector_2.11-1.9.0-rc2.jar,/srv/apps/mysql-connector-java-5.1.38.jar
${
pythonFile
}
$day_count
shell/service_train.sh
View file @
e5cccd39
#cd /srv/apps/tensorServing_models && rm -rf /srv/apps/tensorServing_models/service/
&& mkdir service
cd
/srv/apps/tensorServing_models
&&
rm
-rf
service_copy
&&
mv
service service_copy
&&
mkdir
service
source
/srv/envs/serviceRec/bin/activate
python /srv/apps/serviceRec/train/train_service.py
>
/srv/apps/serviceRec/logs/train_service_log.log
\ No newline at end of file
spark/featureEng.py
View file @
e5cccd39
...
...
@@ -231,6 +231,7 @@ def getDataVocab(samples):
dataVocab
=
{}
multiVocab
=
{}
# 多值特征
for
c
in
ITEM_MULTI_COLUMN_EXTRA_MAP
.
keys
():
datas
=
samples
.
select
(
c
)
.
distinct
()
.
collect
()
tagSet
=
set
()
...
...
@@ -243,10 +244,21 @@ def getDataVocab(samples):
multiVocab
[
c
]
=
list
(
tagSet
)
samples
=
samples
.
drop
(
c
)
# id类特征
for
c
in
[
"userid"
,
"itemid"
]:
datas
=
samples
.
select
(
c
)
.
distinct
()
.
collect
()
vocabSet
=
set
()
for
d
in
datas
:
if
d
[
c
]:
vocabSet
.
add
(
str
(
d
[
c
]))
vocabSet
.
add
(
"-1"
)
# 空值的默认
dataVocab
[
c
]
=
list
(
vocabSet
)
pass
for
c
in
samples
.
columns
:
print
(
"col"
,
c
)
# 判断是否以Bucket结尾 和 类别特征
if
c
.
endswith
(
"Bucket"
)
or
c
.
endswith
(
"userRatedHistory"
)
or
c
in
ITEM_CATE_COLUMNS
+
[
"userid"
,
"itemid"
]
:
if
c
.
endswith
(
"Bucket"
):
datas
=
samples
.
select
(
c
)
.
distinct
()
.
collect
()
vocabSet
=
set
()
for
d
in
datas
:
...
...
@@ -254,6 +266,8 @@ def getDataVocab(samples):
vocabSet
.
add
(
str
(
d
[
c
]))
vocabSet
.
add
(
"-1"
)
# 空值的默认
dataVocab
[
c
]
=
list
(
vocabSet
)
elif
c
.
count
(
"userRatedHistory"
)
>
0
:
dataVocab
[
c
]
=
dataVocab
[
"itemid"
]
else
:
# 判断是否多值离散列
for
cc
,
v
in
multiVocab
.
items
():
...
...
@@ -290,6 +304,25 @@ def collectFeaturesToDict(samples,columns,prefix):
print
(
prefix
,
len
(
resDatas
))
return
{
d
[
idCol
]:
json
.
dumps
(
d
.
asDict
(),
ensure_ascii
=
False
)
for
d
in
resDatas
}
def
featuresToRedis
(
samples
,
columns
,
prefix
,
redisKey
):
idCol
=
prefix
+
"id"
timestampCol
=
idCol
+
"_timestamp"
def
toRedis
(
datas
):
conn
=
connUtils
.
getRedisConn
()
for
d
in
datas
:
k
=
d
[
idCol
]
v
=
json
.
dumps
(
d
.
asDict
(),
ensure_ascii
=
False
)
newKey
=
redisKey
+
k
conn
.
set
(
newKey
,
v
)
conn
.
expire
(
newKey
,
60
*
60
*
24
*
7
)
#根据timestamp获取每个user最新的记录
prefixSamples
=
samples
.
groupBy
(
idCol
)
.
agg
(
F
.
max
(
"timestamp"
)
.
alias
(
timestampCol
))
resDF
=
samples
.
join
(
prefixSamples
,
on
=
[
idCol
],
how
=
'left'
)
.
where
(
F
.
col
(
"timestamp"
)
==
F
.
col
(
timestampCol
))
distinctDF
=
resDF
.
select
(
*
columns
)
.
distinct
()
print
(
prefix
,
distinctDF
.
count
())
distinctDF
.
foreachPartition
(
toRedis
)
"""
数据加载
...
...
@@ -654,15 +687,17 @@ if __name__ == '__main__':
# user特征数据存入redis
print
(
"user feature to redis..."
)
userDatas
=
collectFeaturesToDict
(
samplesWithUserFeatures
,
user_columns
,
"user"
)
featureToRedis
(
FEATURE_USER_KEY
,
userDatas
)
featuresToRedis
(
samplesWithUserFeatures
,
user_columns
,
"user"
,
FEATURE_USER_KEY
)
# userDatas = collectFeaturesToDict(samplesWithUserFeatures, user_columns, "user")
# featureToRedis(FEATURE_USER_KEY, userDatas)
timestmp5
=
int
(
round
(
time
.
time
()))
print
(
"user feature to redis 耗时s:{}"
.
format
(
timestmp5
-
timestmp4
))
# item特征数据存入redis
print
(
"item feature to redis..."
)
itemDatas
=
collectFeaturesToDict
(
samplesWithUserFeatures
,
item_columns
,
"item"
)
featureToRedis
(
FEATURE_ITEM_KEY
,
itemDatas
)
featuresToRedis
(
samplesWithUserFeatures
,
item_columns
,
"item"
,
FEATURE_ITEM_KEY
)
# itemDatas = collectFeaturesToDict(samplesWithUserFeatures, item_columns, "item")
# featureToRedis(FEATURE_ITEM_KEY, itemDatas)
timestmp6
=
int
(
round
(
time
.
time
()))
print
(
"item feature to redis 耗时s:{}"
.
format
(
timestmp6
-
timestmp5
))
...
...
@@ -675,7 +710,7 @@ if __name__ == '__main__':
trainSamples
=
samplesWithUserFeatures
.
select
(
*
train_columns
)
print
(
"write to hdfs start..."
)
splitTimestamp
=
int
(
time
.
mktime
(
time
.
strptime
(
endDay
,
"
%
Y
%
m
%
d"
)))
splitAndSaveTrainingTestSamplesByTimeStamp
(
samplesWithUserFeatur
es
,
splitTimestamp
,
TRAIN_FILE_PATH
)
splitAndSaveTrainingTestSamplesByTimeStamp
(
trainSampl
es
,
splitTimestamp
,
TRAIN_FILE_PATH
)
print
(
"write to hdfs success..."
)
timestmp7
=
int
(
round
(
time
.
time
()))
print
(
"数据写入hdfs 耗时s:{}"
.
format
(
timestmp7
-
timestmp6
))
...
...
train/train_service.py
View file @
e5cccd39
...
...
@@ -105,20 +105,6 @@ def getTrainColumns(train_columns,data_vocab):
emb_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
# if feature.startswith("userRatedHistory") or feature.count("__") > 0 or feature in embedding_columns:
# cat_col = tf.feature_column.categorical_column_with_vocabulary_list(key=feature, vocabulary_list=data_vocab[feature])
# # col = tf.feature_column.embedding_column(cat_col, 10)
# col = tf.feature_column.indicator_column(cat_col)
# columns.append(col)
# dataColumns.append(feature)
# inputs[feature] = tf.keras.layers.Input(name=feature, shape=(), dtype='string')
# elif feature in one_hot_columns or feature.count("Bucket") > 0:
# cat_col = tf.feature_column.categorical_column_with_vocabulary_list(key=feature, vocabulary_list=data_vocab[feature])
# col = tf.feature_column.indicator_column(cat_col)
# columns.append(col)
# dataColumns.append(feature)
# inputs[feature] = tf.keras.layers.Input(name=feature, shape=(), dtype='string')
elif
feature
in
ITEM_NUMBER_COLUMNS
:
col
=
tf
.
feature_column
.
numeric_column
(
feature
)
...
...
@@ -126,7 +112,6 @@ def getTrainColumns(train_columns,data_vocab):
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'float32'
)
return
emb_columns
,
number_columns
,
oneHot_columns
,
dataColumns
,
inputs
...
...
@@ -142,12 +127,6 @@ def train(emb_columns, number_columns, oneHot_columns, inputs, train_dataset):
# output_layer = FM(1)(deep)
model
=
tf
.
keras
.
Model
(
inputs
,
output_layer
)
# model = tf.keras.Sequential([
# tf.keras.layers.DenseFeatures(columns)(inputs),
# tf.keras.layers.Dense(128, activation='relu')(inputs),
# tf.keras.layers.Dense(128, activation='relu')(inputs),
# tf.keras.layers.Dense(1, activation='sigmoid'),
# ])
# compile the model, set loss function, optimizer and evaluation metrics
model
.
compile
(
...
...
@@ -212,8 +191,11 @@ if __name__ == '__main__':
# 获取训练列
columns
=
df_train
.
columns
.
tolist
()
print
(
"原始数据列:"
)
print
(
columns
)
emb_columns
,
number_columns
,
oneHot_columns
,
datasColumns
,
inputs
=
getTrainColumns
(
columns
,
data_vocab
)
print
(
"训练列:"
)
print
(
datasColumns
)
df_train
=
df_train
[
datasColumns
+
[
"label"
]]
df_test
=
df_test
[
datasColumns
+
[
"label"
]]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment