Commit e776b8b5 authored by 郭羽's avatar 郭羽

service model 优化

parent 190731d8
import sys
import os
from datetime import date, timedelta
from elasticsearch import Elasticsearch
from elasticsearch.helpers import scan
import time
import redis
from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession
import pyspark.sql as sql
from pyspark.sql.functions import when,col
from pyspark.sql.types import *
from pyspark.sql import functions as F
from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, QuantileDiscretizer, MinMaxScaler
from collections import defaultdict
import json
sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__))))
import utils.configUtils as configUtils
# import utils.connUtils as connUtils
import pandas as pd
# os.environ["PYSPARK_PYTHON"]="/usr/bin/python3"
"""
特征工程
"""
ITEM_MULTI_COLUMN_EXTRA_MAP = {"first_demands": 1,
"second_demands": 5,
"first_solutions": 1,
"second_solutions": 5,
"first_positions": 1,
"second_positions": 5,
"tags_v3": 10,
}
USER_MULTI_COLUMN_EXTRA_MAP = {"first_demands": 1,
"second_demands": 3,
"first_solutions": 1,
"second_solutions": 3,
"first_positions": 1,
"second_positions": 3,
"tags_v3": 5,
}
ITEM_NUMBER_COLUMNS = ["lowest_price","smart_rank2","case_count","ordered_user_ids_count"]
ITEM_CATE_COLUMNS = ["service_type","merchant_id","doctor_type","doctor_id","doctor_famous","hospital_id","hospital_city_tag_id","hospital_type","hospital_is_high_quality"]
NUMBER_PRECISION = 2
VERSION = configUtils.SERVICE_VERSION
FEATURE_USER_KEY = "Strategy:rec:feature:service:" + VERSION + ":user:"
FEATURE_ITEM_KEY = "Strategy:rec:feature:service:" + VERSION + ":item:"
FEATURE_VOCAB_KEY = "Strategy:rec:vocab:service:" + VERSION
FEATURE_COLUMN_KEY = "Strategy:rec:column:service:" + VERSION
TRAIN_FILE_PATH = "service_feature_" + VERSION
ITEM_PREFIX = "item_"
def getRedisConn():
pool = redis.ConnectionPool(host="172.16.50.145",password="XfkMCCdWDIU%ls$h",port=6379,db=0)
conn = redis.Redis(connection_pool=pool)
# conn = redis.Redis(host="172.16.50.145", port=6379, password="XfkMCCdWDIU%ls$h",db=0)
# conn = redis.Redis(host="172.18.51.10", port=6379,db=0) #test
return conn
def addItemFeatures(samples,itemDF,dataVocab,multiVocab):
itemDF = itemDF.withColumnRenamed("id", "itemid")
# 数据过滤:无医生
itemDF = itemDF.filter(col("doctor_id") != "-1")
# itemid
vocabList = collectColumnToVocab(itemDF, "itemid")
dataVocab["itemid"] = vocabList
# null处理
for c in ITEM_NUMBER_COLUMNS:
print("null count:",c,itemDF.filter(col(c).isNull()).count())
itemDF = itemDF.withColumn(ITEM_PREFIX+c,when(col(c).isNull(),0).otherwise(col(c)).cast("float")).drop(c)
for c in ITEM_CATE_COLUMNS:
print("null count:", c, itemDF.filter(col(c).isNull()).count())
itemDF = itemDF.withColumn(ITEM_PREFIX+c, F.when(F.col(c).isNull(), "-1").otherwise(F.col(c))).drop(c)
# 字典添加
dataVocab[ITEM_PREFIX+c] = collectColumnToVocab(itemDF,ITEM_PREFIX+c)
# 离散特征处理
for c, v in ITEM_MULTI_COLUMN_EXTRA_MAP.items():
print("null count:", c, itemDF.filter(col(c).isNull()).count())
itemDF = itemDF.withColumn(c, F.when(F.col(c).isNull(), "-1").otherwise(F.col(c)))
multiVocab[c] = collectMutiColumnToVocab(itemDF, c)
for i in range(1, v + 1):
new_c = ITEM_PREFIX + c + "__" + str(i)
itemDF = itemDF.withColumn(new_c, F.split(F.col(c), ",")[i - 1])
itemDF = itemDF.withColumn(new_c, F.when(F.col(new_c).isNull(), "-1").otherwise(F.col(new_c)))
dataVocab[new_c] = multiVocab[c]
samples = samples.join(itemDF, on=['itemid'], how='inner')
# 统计特征处理
print("统计特征处理...")
staticFeatures = samples.groupBy('itemid').agg(F.count(F.lit(1)).alias('itemRatingCount'),
F.avg(F.col('rating')).alias('itemRatingAvg'),
F.stddev(F.col('rating')).alias('itemRatingStddev')).fillna(0) \
.withColumn('itemRatingStddev', F.format_number(F.col('itemRatingStddev'), NUMBER_PRECISION).cast("float")) \
.withColumn('itemRatingAvg', F.format_number(F.col('itemRatingAvg'), NUMBER_PRECISION).cast("float"))
# join item rating features
samples = samples.join(staticFeatures, on=['itemid'], how='left')
print("连续特征处理...")
# todo 分桶比较耗时,可以考虑做非线性转换
# 连续特征处理
pipelineStage = []
# Normalization
# for c in ["itemRatingAvg","itemRatingStddev"]:
# pipelineStage.append(MinMaxScaler(inputCol=c, outputCol=c+"Scale"))
# bucketing
bucketColumns = [ITEM_PREFIX+"case_count", ITEM_PREFIX+"ordered_user_ids_count", ITEM_PREFIX+"lowest_price", "itemRatingCount", "itemRatingStddev","itemRatingAvg"]
for c in bucketColumns:
pipelineStage.append(QuantileDiscretizer(numBuckets=10, inputCol=c, outputCol=c + "Bucket"))
featurePipeline = Pipeline(stages=pipelineStage)
samples = featurePipeline.fit(samples).transform(samples)
# 转string
for c in bucketColumns:
samples = samples.withColumn(c + "Bucket",F.col(c + "Bucket").cast("string")).drop(c)
dataVocab[c + "Bucket"] = [str(float(i)) for i in range(11)]
samples.printSchema()
# samples.show(5, truncate=False)
return samples
def extractTags(genres_list):
genres_dict = defaultdict(int)
for genres in genres_list:
for genre in genres.split(','):
genres_dict[genre] += 1
sortedGenres = sorted(genres_dict.items(), key=lambda x: x[1], reverse=True)
return [x[0] for x in sortedGenres]
# sql版本不支持F.reverse
def arrayReverse(arr):
arr.reverse()
return arr
def addUserFeatures(samples,dataVocab,multiVocab):
dataVocab["userid"] = collectColumnToVocab(samples, "userid")
dataVocab["user_os"] = ["ios","android","-1"]
extractTagsUdf = F.udf(extractTags, ArrayType(StringType()))
arrayReverseUdf = F.udf(arrayReverse, ArrayType(StringType()))
samples = samples.withColumnRenamed("cl_id","userid")
print("user历史数据处理...")
# user历史记录
samples = samples\
.withColumn('userPositiveHistory',F.collect_list(when(F.col('label') == 1, F.col('itemid')).otherwise(F.lit(None))).over(sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1))) \
.withColumn("userPositiveHistory", arrayReverseUdf(F.col("userPositiveHistory")))
for i in range(1,11):
samples = samples.withColumn("userRatedHistory"+str(i), F.when(F.col("userPositiveHistory")[i-1].isNotNull(),F.col("userPositiveHistory")[i-1]).otherwise("-1"))
dataVocab["userRatedHistory"+str(i)] = dataVocab["itemid"]
samples = samples.drop("userPositiveHistory")
# user历史点击分值统计
print("统计特征处理...")
samples = samples\
.withColumn('userRatingCount',F.count(F.lit(1)).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1))) \
.withColumn("userRatingAvg", F.format_number(F.avg(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)),NUMBER_PRECISION).cast("float")) \
.withColumn("userRatingStddev", F.format_number(F.stddev(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)),NUMBER_PRECISION).cast("float")) \
.filter(F.col("userRatingCount") > 1)
# user偏好
for c,v in USER_MULTI_COLUMN_EXTRA_MAP.items():
new_col = "user" + "__" + c
samples = samples.withColumn(new_col, extractTagsUdf(F.collect_list(when(F.col('label') == 1, F.col(c)).otherwise(F.lit(None))).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1))))
for i in range(1, v+1):
samples = samples.withColumn(new_col + "__" + str(i),F.when(F.col(new_col)[i - 1].isNotNull(), F.col(new_col)[i - 1]).otherwise("-1"))
dataVocab[new_col + "__" + str(i)] = multiVocab[c]
samples = samples.drop(new_col)
# .drop(c).drop(new_col)
print("连续特征处理...")
pipelineStage = []
# Normalization
# for c in ["userRatingAvg", "userRatingStddev"]:
# pipelineStage.append(MinMaxScaler(inputCol=c, outputCol=c + "Scale"))
# bucketing
bucketColumns = ["userRatingCount","userRatingAvg","userRatingStddev"]
for c in bucketColumns:
pipelineStage.append(QuantileDiscretizer(numBuckets=10, inputCol=c, outputCol=c + "Bucket"))
featurePipeline = Pipeline(stages=pipelineStage)
samples = featurePipeline.fit(samples).transform(samples)
# 转string
for c in bucketColumns:
samples = samples.withColumn(c + "Bucket", F.col(c + "Bucket").cast("string")).drop(c)
dataVocab[c + "Bucket"] = [str(float(i)) for i in range(11)]
samples.printSchema()
# samples.show(5,truncate=False)
return samples
def addSampleLabel(ratingSamples):
ratingSamples = ratingSamples.withColumn('label', when(F.col('rating') >= 1, 1).otherwise(0))
ratingSamples.show(5, truncate=False)
ratingSamples.printSchema()
return ratingSamples
def samplesNegAndUnion(samplesPos,samplesNeg):
# 正负样本 1:4
pos_count = samplesPos.count()
neg_count = samplesNeg.count()
print("before filter posSize:{},negSize:{}".format(str(pos_count), str(neg_count)))
samplesNeg = samplesNeg.sample(pos_count * 4 / neg_count)
samples = samplesNeg.union(samplesPos)
dataSize = samples.count()
print("dataSize:{}".format(str(dataSize)))
return samples
def splitAndSaveTrainingTestSamplesByTimeStamp(samples,splitTimestamp, file_path):
samples = samples.withColumn("timestampLong", F.col("timestamp").cast(LongType()))
# quantile = smallSamples.stat.approxQuantile("timestampLong", [0.8], 0.05)
# splitTimestamp = quantile[0]
train = samples.where(F.col("timestampLong") <= splitTimestamp).drop("timestampLong")
test = samples.where(F.col("timestampLong") > splitTimestamp).drop("timestampLong")
print("split train size:{},test size:{}".format(str(train.count()),str(test.count())))
trainingSavePath = file_path + '_train'
testSavePath = file_path + '_test'
train.write.option("header", "true").option("delimiter", "|").mode('overwrite').csv(trainingSavePath)
test.write.option("header", "true").option("delimiter", "|").mode('overwrite').csv(testSavePath)
def collectColumnToVocab(samples,column):
datas = samples.select(column).distinct().collect()
vocabSet = set()
for d in datas:
if d[column]:
vocabSet.add(str(d[column]))
vocabSet.add("-1") # 空值的默认
return list(vocabSet)
def collectMutiColumnToVocab(samples,column):
datas = samples.select(column).distinct().collect()
tagSet = set()
for d in datas:
if d[column]:
for tag in d[column].split(","):
tagSet.add(tag)
tagSet.add("-1") # 空值默认
return list(tagSet)
def getDataVocab(samples,model_columns):
dataVocab = {}
multiVocab = {}
# 多值特征
for c in ITEM_MULTI_COLUMN_EXTRA_MAP.keys():
print(c)
multiVocab[c] = collectMutiColumnToVocab(samples,c)
samples = samples.drop(c)
# id类特征 和 类别特征
for c in ["userid"]:
print(c)
dataVocab[c] = collectColumnToVocab(samples,c)
for c in model_columns:
# 判断是否以Bucket结尾
if c.endswith("Bucket"):
datas = samples.select(c).distinct().collect()
vocabSet = set()
for d in datas:
if d[c]:
vocabSet.add(str(d[c]))
vocabSet.add("-1")# 空值的默认
dataVocab[c] = list(vocabSet)
# elif c.count("userRatedHistory") > 0:
# dataVocab[c] = dataVocab["itemid"]
else:
# 判断是否多值离散列
for cc, v in multiVocab.items():
if c.count(cc) > 0:
dataVocab[c] = v
return dataVocab
def dataVocabToRedis(dataVocab):
conn = getRedisConn()
conn.set(FEATURE_VOCAB_KEY,dataVocab)
conn.expire(FEATURE_VOCAB_KEY,60 * 60 * 24 * 7)
def featureColumnsToRedis(columns):
conn = getRedisConn()
conn.set(FEATURE_COLUMN_KEY, json.dumps(columns))
conn.expire(FEATURE_COLUMN_KEY, 60 * 60 * 24 * 7)
def featureToRedis(key,datas):
conn = getRedisConn()
for k,v in datas.items():
newKey = key+k
conn.set(newKey,v)
conn.expire(newKey, 60 * 60 * 24 * 7)
def collectFeaturesToDict(samples,columns,prefix):
idCol = prefix+"id"
timestampCol = idCol+"_timestamp"
#根据timestamp获取每个user最新的记录
prefixSamples = samples.groupBy(idCol).agg(F.max("timestamp").alias(timestampCol))
resDatas = samples.join(prefixSamples, on=[idCol], how='left').where(F.col("timestamp") == F.col(timestampCol))
resDatas = resDatas.select(*columns).distinct().collect()
print(prefix,len(resDatas))
return {d[idCol]:json.dumps(d.asDict(),ensure_ascii=False) for d in resDatas}
def featuresToRedis(samples,columns,prefix,redisKey):
idCol = prefix+"id"
timestampCol = idCol+"_timestamp"
def toRedis(datas):
conn = getRedisConn()
for d in datas:
k = d[idCol]
v = json.dumps(d.asDict(), ensure_ascii=False)
newKey = redisKey + k
conn.set(newKey, v)
conn.expire(newKey, 60 * 60 * 24 * 7)
#根据timestamp获取每个user最新的记录
prefixSamples = samples.groupBy(idCol).agg(F.max("timestamp").alias(timestampCol))
resDatas = samples.join(prefixSamples, on=[idCol], how='left').where(F.col("timestamp") == F.col(timestampCol))
resDatas = resDatas.select(*columns).distinct()
print(prefix, resDatas.count())
resDatas.repartition(8).foreachPartition(toRedis)
"""
数据加载
"""
CONTENT_TYPE = "service"
SERVICE_HOSTS = [
{'host': "172.16.52.33", 'port': 9200},
{'host': "172.16.52.19", 'port': 9200},
{'host': "172.16.52.48", 'port': 9200},
{'host': "172.16.52.27", 'port': 9200},
{'host': "172.16.52.34", 'port': 9200}
]
ES_INDEX = "gm-dbmw-service-read"
ES_INDEX_TEST = "gm_test-service-read"
ACTION_REG = r"""^\\d+$"""
def getEsConn_test():
host_config = [{'host': '172.18.52.14', 'port': 9200}, {'host': '172.18.52.133', 'port': 9200},
{'host': '172.18.52.7', 'port': 9200}]
return Elasticsearch(host_config, http_auth=('elastic', 'gm_test'), timeout=3600)
def getEsConn():
return Elasticsearch(SERVICE_HOSTS, http_auth=('elastic', 'gengmei!@#'), timeout=3600)
def getClickSql(start, end):
sql = """
SELECT DISTINCT t1.partition_date, t1.cl_id device_id, t1.card_id,t1.time_stamp,t1.page_stay,t1.cl_type as os,t1.city_id as user_city_id
FROM
(
select partition_date,city_id,cl_id,business_id as card_id,time_stamp,page_stay,cl_type
from online.bl_hdfs_maidian_updates
where action = 'page_view'
AND partition_date>='{startDay}' and partition_date<='{endDay}'
AND page_name='welfare_detail'
-- AND page_stay>=1
AND cl_id is not null
AND cl_id != ''
AND business_id is not null
AND business_id != ''
group by partition_date,city_id,cl_id,business_id,time_stamp,page_stay,cl_type
) AS t1
join
( --渠道,新老
SELECT distinct device_id
FROM online.ml_device_day_active_status
where partition_date>='{startDay}' and partition_date<='{endDay}'
AND active_type in ('1','2','4')
and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown')
AND first_channel_source_type not like 'promotion\_jf\_%'
) t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
""".format(startDay=start,endDay=end)
print(sql)
return sql
def getExposureSql(start, end):
sql = """
SELECT DISTINCT t1.partition_date,t1.cl_id device_id,t1.card_id,t1.time_stamp, 0 as page_stay,cl_type as os,t1.city_id as user_city_id
from
( --新首页卡片曝光
SELECT partition_date,city_id,cl_type,cl_id,card_id,max(time_stamp) as time_stamp
FROM online.ml_community_precise_exposure_detail
where partition_date>='{startDay}' and partition_date<='{endDay}'
and action in ('page_precise_exposure','home_choiceness_card_exposure')
and cl_id IS NOT NULL
and card_id IS NOT NULL
and is_exposure='1'
--and page_name='home'
--and tab_name='精选'
--and page_name in ('home','search_result_more')
and ((page_name='home' and tab_name='精选') or (page_name='category' and tab_name = '商品'))
and card_type in ('card','video')
and card_content_type in ('service')
and (get_json_object(exposure_card,'$.in_page_pos') is null or get_json_object(exposure_card,'$.in_page_pos') != 'seckill')
group by partition_date,city_id,cl_type,cl_id,card_id,app_session_id
) t1
join
( --渠道,新老
SELECT distinct device_id
FROM online.ml_device_day_active_status
where partition_date>='{startDay}' and partition_date<='{endDay}'
AND active_type in ('1','2','4')
and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown')
AND first_channel_source_type not like 'promotion\_jf\_%'
) t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
""".format(startDay=start,endDay=end)
print(sql)
return sql
def getClickSql2(start, end):
sql = """
SELECT DISTINCT t1.partition_date, t1.cl_id device_id, t1.business_id card_id,t1.time_stamp time_stamp,t1.page_stay as page_stay
FROM
(select partition_date,cl_id,business_id,action,page_name,page_stay,time_stamp,page_stay
from online.bl_hdfs_maidian_updates
where action = 'page_view'
AND partition_date BETWEEN '{}' AND '{}'
AND page_name='welfare_detail'
AND page_stay>=1
AND cl_id is not null
AND cl_id != ''
AND business_id is not null
AND business_id != ''
AND business_id rlike '{}'
) AS t1
JOIN
(select partition_date,active_type,first_channel_source_type,device_id
from online.ml_device_day_active_status
where partition_date BETWEEN '{}' AND '{}'
AND active_type IN ('1', '2', '4')
AND first_channel_source_type not IN ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei')
AND first_channel_source_type not LIKE 'promotion\\_jf\\_%') as t2
ON t1.cl_id = t2.device_id
AND t1.partition_date = t2.partition_date
LEFT JOIN
(
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY = regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)dev
on t1.cl_id=dev.device_id
WHERE dev.device_id is null
""".format(start, end, ACTION_REG, start, end)
print(sql)
return sql
def getExposureSql2(start, end):
sql = """
SELECT DISTINCT t1.partition_date,t1.cl_id device_id,t1.card_id,t1.time_stamp, 0 as page_stay
FROM
(SELECT partition_date,cl_id,card_id,time_stamp
FROM online.ml_community_precise_exposure_detail
WHERE cl_id IS NOT NULL
AND card_id IS NOT NULL
AND card_id rlike '{}'
AND action='page_precise_exposure'
AND card_content_type = '{}'
AND is_exposure = 1 ) AS t1
LEFT JOIN online.ml_device_day_active_status AS t2 ON t1.cl_id = t2.device_id
AND t1.partition_date = t2.partition_date
LEFT JOIN
( SELECT DISTINCT device_id
FROM ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
WHERE PARTITION_DAY = regexp_replace(DATE_SUB(CURRENT_DATE,1),'-','')
AND is_abnormal_device = 'true' )dev
ON t1.cl_id=dev.device_id
WHERE dev.device_id IS NULL
AND t2.partition_date BETWEEN '{}' AND '{}'
AND t2.active_type IN ('1',
'2',
'4')
AND t2.first_channel_source_type NOT IN ('yqxiu1',
'yqxiu2',
'yqxiu3',
'yqxiu4',
'yqxiu5',
'mxyc1',
'mxyc2',
'mxyc3' ,
'wanpu',
'jinshan',
'jx',
'maimai',
'zhuoyi',
'huatian',
'suopingjingling',
'mocha',
'mizhe',
'meika',
'lamabang' ,
'js-az1',
'js-az2',
'js-az3',
'js-az4',
'js-az5',
'jfq-az1',
'jfq-az2',
'jfq-az3',
'jfq-az4',
'jfq-az5',
'toufang1' ,
'toufang2',
'toufang3',
'toufang4',
'toufang5',
'toufang6',
'TF-toufang1',
'TF-toufang2',
'TF-toufang3',
'TF-toufang4' ,
'TF-toufang5',
'tf-toufang1',
'tf-toufang2',
'tf-toufang3',
'tf-toufang4',
'tf-toufang5',
'benzhan',
'promotion_aso100' ,
'promotion_qianka',
'promotion_xiaoyu',
'promotion_dianru',
'promotion_malioaso',
'promotion_malioaso-shequ' ,
'promotion_shike',
'promotion_julang_jl03',
'promotion_zuimei')
AND t2.first_channel_source_type NOT LIKE 'promotion\\_jf\\_%'
""".format(ACTION_REG, CONTENT_TYPE, start, end)
print(sql)
return sql
def connectDoris(spark, table):
return spark.read \
.format("jdbc") \
.option("driver", "com.mysql.jdbc.Driver") \
.option("url", "jdbc:mysql://172.16.30.136:3306/doris_prod") \
.option("dbtable", table) \
.option("user", "doris") \
.option("password", "o5gbA27hXHHm") \
.load()
def get_spark(appName):
sparkConf = SparkConf()
sparkConf.set("spark.sql.crossJoin.enabled", True)
sparkConf.set("spark.debug.maxToStringFields", "100")
sparkConf.set("spark.tispark.plan.allow_index_double_read", False)
sparkConf.set("spark.tispark.plan.allow_index_read", True)
sparkConf.set("spark.hive.mapred.supports.subdirectories", True)
sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True)
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
sparkConf.set("mapreduce.output.fileoutputformat.compress", False)
sparkConf.set("mapreduce.map.output.compress", False)
spark = (SparkSession
.builder
.config(conf=sparkConf)
.appName(appName)
.enableHiveSupport()
.getOrCreate())
return spark
def init_es_query():
q = {
"_source": {
"includes":[]
},
"query": {
"bool": {
"must": [],
"must_not": [],
"should": []
}
}
}
return q
def parseSource(_source):
id = str(_source.setdefault("id",-1))
case_count = _source.setdefault("case_count",0)
sales_count = _source.setdefault("sales_count",0)
service_type = str(_source.setdefault("service_type",-1))
second_demands = ','.join(_source.setdefault("second_demands",["-1"]))
second_solutions = ','.join(_source.setdefault("second_solutions",["-1"]))
second_positions = ','.join(_source.setdefault("second_positions",["-1"]))
# sku
sku_list = _source.setdefault("sku_list",[])
sku_tags_list = []
sku_show_tags_list = []
sku_price_list = [0.0]
for sku in sku_list:
sku_tags_list += sku.setdefault("sku_tags_id",[])
sku_show_tags_list.append(sku.setdefault("show_project_type_name",""))
sku_price_list.append(sku.setdefault("price",0.0))
sku_tags = ",".join([str(i) for i in sku_tags_list]) if len(sku_tags_list) > 0 else "-1"
sku_show_tags = ",".join(sku_show_tags_list) if len(sku_show_tags_list) > 0 else "-1"
sku_price = min(sku_price_list)
#merchant_id
merchant_id = str(_source.setdefault("merchant_id","-1"))
# doctor_type id famous_doctor
doctor = _source.setdefault("doctor",{})
doctor_type = str(doctor.setdefault("doctor_type","-1"))
doctor_id = str(doctor.setdefault("id","-1"))
doctor_famous = str(int(doctor.setdefault("famous_doctor",False)))
# hospital id city_tag_id hospital_type is_high_quality
hospital = doctor.setdefault("hospital", {})
hospital_id = str(hospital.setdefault("id", "-1"))
hospital_city_tag_id = str(hospital.setdefault("city_tag_id", -1))
hospital_type = str(hospital.setdefault("hospital_type", "-1"))
hospital_is_high_quality = str(int(hospital.setdefault("is_high_quality", False)))
data = [id,
case_count,
sales_count,
service_type,
merchant_id,
doctor_type,
doctor_id,
doctor_famous,
hospital_id,
hospital_city_tag_id,
hospital_type,
hospital_is_high_quality,
second_demands,
second_solutions,
second_positions,
sku_tags,
sku_show_tags,
sku_price
]
return data
# es中获取特征
def get_service_feature_df():
es_columns = ["id", "sales_count", "doctor", "case_count", "service_type","merchant_id","second_demands", "second_solutions", "second_positions", "sku_list"]
query = init_es_query()
query["_source"]["includes"] = es_columns
print(json.dumps(query), flush=True)
es_cli = getEsConn()
scan_re = scan(client=es_cli, index=ES_INDEX, query=query, scroll='3m')
datas = []
for res in scan_re:
_source = res['_source']
data = parseSource(_source)
datas.append(data)
print("item size:",len(datas))
itemColumns = ['id', 'case_count', 'sales_count', 'service_type','merchant_id',
'doctor_type', 'doctor_id', 'doctor_famous', 'hospital_id', 'hospital_city_tag_id', 'hospital_type',
'hospital_is_high_quality', 'second_demands','second_solutions', 'second_positions',
'sku_tags','sku_show_tags','sku_price']
df = pd.DataFrame(datas,columns=itemColumns)
return df
def addDays(n, format="%Y%m%d"):
return (date.today() + timedelta(days=n)).strftime(format)
if __name__ == '__main__':
start = time.time()
#入参
trainDays = int(sys.argv[1])
print('trainDays:{}'.format(trainDays),flush=True)
endDay = addDays(0)
startDay = addDays(-int(trainDays))
print("train_data start:{} end:{}".format(startDay,endDay))
conf = SparkConf().setAppName('featureEngineering').setMaster('local')
spark = SparkSession.builder.config(conf=conf).getOrCreate()
spark.sparkContext.setLogLevel("ERROR")
# 行为数据
clickSql = getClickSql(startDay,endDay)
expSql = getExposureSql(startDay,endDay)
clickDF = spark.sql(clickSql)
expDF = spark.sql(expSql)
# ratingDF = samplesNegAndUnion(clickDF,expDF)
ratingDF = clickDF.union(expDF)
ratingDF = ratingDF.withColumnRenamed("time_stamp", "timestamp")\
.withColumnRenamed("device_id", "userid")\
.withColumnRenamed("card_id", "itemid")\
.withColumnRenamed("page_stay", "rating")\
.withColumnRenamed("os", "user_os")
print(ratingDF.columns)
print(ratingDF.show(10, truncate=False))
print("添加label...")
ratingSamplesWithLabel = addSampleLabel(ratingDF)
df = ratingSamplesWithLabel.toPandas()
df = pd.DataFrame(df)
posCount = df.loc[df["label"]==0]["label"].count()
negCount = df.loc[df["label"]==1]["label"].count()
print("pos size:"+str(posCount),"neg size:"+str(negCount))
itemDF = get_service_feature_df(spark)
print(itemDF.columns)
print(itemDF.show(10, truncate=False))
itemDF.to_csv("/tmp/service_{}.csv".format(endDay))
df.to_csv("/tmp/service_train_{}.csv".format(endDay))
# # 数据字典
# dataVocab = {}
# multiVocab = {}
#
# print("处理item特征...")
# timestmp1 = int(round(time.time()))
# samplesWithItemFeatures = addItemFeatures(ratingSamplesWithLabel, itemDF, dataVocab,multiVocab)
# timestmp2 = int(round(time.time()))
# print("处理item特征, 耗时s:{}".format(timestmp2 - timestmp1))
# print("multiVocab:")
# print(multiVocab.keys())
#
# print("处理user特征...")
# samplesWithUserFeatures = addUserFeatures(samplesWithItemFeatures,dataVocab,multiVocab)
# timestmp3 = int(round(time.time()))
# print("处理user特征, 耗时s:{}".format(timestmp3 - timestmp2))
#
# # user columns
# user_columns = [c for c in samplesWithUserFeatures.columns if c.startswith("user")]
# print("collect feature for user:{}".format(str(user_columns)))
# # item columns
# item_columns = [c for c in samplesWithUserFeatures.columns if c.startswith("item")]
# print("collect feature for item:{}".format(str(item_columns)))
# # model columns
# print("model columns to redis...")
# model_columns = user_columns + item_columns
# featureColumnsToRedis(model_columns)
#
# print("数据字典save...")
# print("dataVocab:", str(dataVocab.keys()))
# vocab_path = "../vocab/{}_vocab.json".format(VERSION)
# dataVocabStr = json.dumps(dataVocab, ensure_ascii=False)
# open(configUtils.VOCAB_PATH, mode='w', encoding='utf-8').write(dataVocabStr)
#
# """特征数据存入redis======================================"""
# # user特征数据存入redis
# featuresToRedis(samplesWithUserFeatures, user_columns, "user", FEATURE_USER_KEY)
# timestmp5 = int(round(time.time()))
# print("user feature to redis 耗时s:{}".format(timestmp5 - timestmp3))
# # userDatas = collectFeaturesToDict(samplesWithUserFeatures, user_columns, "user")
# # featureToRedis(FEATURE_USER_KEY, userDatas)
# # itemDatas = collectFeaturesToDict(samplesWithUserFeatures, item_columns, "item")
# # featureToRedis(FEATURE_ITEM_KEY, itemDatas)
#
# # item特征数据存入redis
# # todo 添加最近一个月有行为的item,待优化:扩大item范围
# featuresToRedis(samplesWithUserFeatures, item_columns, "item", FEATURE_ITEM_KEY)
# timestmp6 = int(round(time.time()))
# print("item feature to redis 耗时s:{}".format(timestmp6 - timestmp5))
#
# """训练数据保存 ======================================"""
# timestmp3 = int(round(time.time()))
# train_columns = model_columns + ["label", "timestamp", "rating"]
# trainSamples = samplesWithUserFeatures.select(*train_columns)
# print("write to hdfs start...")
# splitTimestamp = int(time.mktime(time.strptime(addDays(0), "%Y%m%d")))
# splitAndSaveTrainingTestSamplesByTimeStamp(trainSamples, splitTimestamp, TRAIN_FILE_PATH)
# print("write to hdfs success...")
# timestmp4 = int(round(time.time()))
# print("数据写入hdfs 耗时s:{}".format(timestmp4 - timestmp3))
#
# print("总耗时m:{}".format((timestmp4 - start)/60))
#
# spark.stop()
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment