Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
ef366e48
Commit
ef366e48
authored
Jul 30, 2021
by
郭羽
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
service model 优化
parent
59664d37
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
123 additions
and
41 deletions
+123
-41
featureEng2.py
spark/featureEng2.py
+123
-41
No files found.
spark/featureEng2.py
View file @
ef366e48
...
...
@@ -81,7 +81,46 @@ def priceToBucket(num):
numberToBucketUdf
=
F
.
udf
(
numberToBucket
,
StringType
())
priceToBucketUdf
=
F
.
udf
(
priceToBucket
,
StringType
())
def
addStaticsFeatures
(
samples
,
dataVocab
):
def
addItemStaticFeatures
(
samples
,
itemDF
,
dataVocab
):
print
(
"item统计特征处理..."
)
staticFeatures
=
samples
.
groupBy
(
'item_id'
)
.
agg
(
F
.
count
(
F
.
lit
(
1
))
.
alias
(
'itemRatingCount'
),
F
.
avg
(
F
.
col
(
'rating'
))
.
alias
(
'itemRatingAvg'
),
F
.
stddev
(
F
.
col
(
'rating'
))
.
alias
(
'itemRatingStddev'
),
F
.
sum
(
when
(
F
.
col
(
'label'
)
==
1
,
F
.
lit
(
1
))
.
otherwise
(
F
.
lit
(
0
)))
.
alias
(
"itemClickCount"
),
F
.
sum
(
when
(
F
.
col
(
'label'
)
==
0
,
F
.
lit
(
1
))
.
otherwise
(
F
.
lit
(
0
)))
.
alias
(
"itemExpCount"
)
)
.
fillna
(
0
)
\
.
withColumn
(
'itemRatingStddev'
,
F
.
format_number
(
F
.
col
(
'itemRatingStddev'
),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
'itemRatingAvg'
,
F
.
format_number
(
F
.
col
(
'itemRatingAvg'
),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
'itemCtr'
,
F
.
format_number
(
F
.
col
(
"itemClickCount"
)
/
(
F
.
col
(
"itemExpCount"
)
+
1
),
NUMBER_PRECISION
)
.
cast
(
"float"
))
staticFeatures
.
show
(
20
,
truncate
=
False
)
staticFeatures
=
itemDF
.
join
(
itemStaticDF
,
on
=
[
"item_id"
],
how
=
'left'
)
# 连续特征分桶
bucket_vocab
=
[
str
(
i
)
for
i
in
range
(
101
)]
bucket_suffix
=
"_Bucket"
for
col
in
[
"itemRatingCount"
,
"itemRatingAvg"
,
"itemClickCount"
,
"itemExpCount"
]:
new_col
=
col
+
bucket_suffix
staticFeatures
=
staticFeatures
.
withColumn
(
new_col
,
numberToBucketUdf
(
F
.
col
(
col
)))
\
.
drop
(
col
)
\
.
withColumn
(
new_col
,
F
.
when
(
F
.
col
(
new_col
)
.
isNull
(),
"0"
)
.
otherwise
(
F
.
col
(
new_col
)))
dataVocab
[
new_col
]
=
bucket_vocab
# 方差处理
number_suffix
=
"_number"
for
col
in
[
"itemRatingStddev"
]:
new_col
=
col
+
number_suffix
staticFeatures
=
staticFeatures
.
withColumn
(
new_col
,
F
.
when
(
F
.
col
(
col
)
.
isNull
(),
0
)
.
otherwise
(
1
/
(
F
.
col
(
col
)
+
1
)))
.
drop
(
col
)
for
col
in
[
"itemCtr"
]:
new_col
=
col
+
number_suffix
staticFeatures
=
staticFeatures
.
withColumn
(
col
,
F
.
when
(
F
.
col
(
col
)
.
isNull
(),
0
)
.
otherwise
(
F
.
col
(
col
)))
.
withColumnRenamed
(
col
,
new_col
)
print
(
"item size:"
,
staticFeatures
.
count
())
return
staticFeatures
def
addUserStaticsFeatures
(
samples
,
dataVocab
):
print
(
"user统计特征处理..."
)
samples
=
samples
\
.
withColumn
(
'userRatingCount'
,
F
.
format_number
(
F
.
sum
(
F
.
lit
(
1
))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
...
...
@@ -92,21 +131,14 @@ def addStaticsFeatures(samples,dataVocab):
.
withColumn
(
"userCtr"
,
F
.
format_number
(
F
.
col
(
"userClickCount"
)
/
(
F
.
col
(
"userExpCount"
)
+
1
),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
filter
(
F
.
col
(
"userRatingCount"
)
>
1
)
print
(
"item统计特征处理..."
)
samples
=
samples
\
.
withColumn
(
'itemRatingCount'
,
F
.
format_number
(
F
.
sum
(
F
.
lit
(
1
))
.
over
(
sql
.
Window
.
partitionBy
(
'item_id'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"itemRatingAvg"
,
F
.
format_number
(
F
.
avg
(
F
.
col
(
"rating"
))
.
over
(
sql
.
Window
.
partitionBy
(
'item_id'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"itemRatingStddev"
,
F
.
format_number
(
F
.
stddev
(
F
.
col
(
"rating"
))
.
over
(
sql
.
Window
.
partitionBy
(
'item_id'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"itemClickCount"
,
F
.
format_number
(
F
.
sum
(
when
(
F
.
col
(
'label'
)
==
1
,
F
.
lit
(
1
))
.
otherwise
(
F
.
lit
(
0
)))
.
over
(
sql
.
Window
.
partitionBy
(
"item_id"
)
.
orderBy
(
F
.
col
(
"timestamp"
))
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"itemExpCount"
,
F
.
format_number
(
F
.
sum
(
when
(
F
.
col
(
'label'
)
==
0
,
F
.
lit
(
1
))
.
otherwise
(
F
.
lit
(
0
)))
.
over
(
sql
.
Window
.
partitionBy
(
"item_id"
)
.
orderBy
(
F
.
col
(
"timestamp"
))
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"itemCtr"
,
F
.
format_number
(
F
.
col
(
"itemClickCount"
)
/
(
F
.
col
(
"itemExpCount"
)
+
1
),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
samples
.
show
(
20
,
truncate
=
False
)
# 连续特征分桶
bucket_vocab
=
[
str
(
i
)
for
i
in
range
(
101
)]
bucket_suffix
=
"_Bucket"
for
col
in
[
"userRatingCount"
,
"userRatingAvg"
,
"userClickCount"
,
"userExpCount"
,
"itemRatingCount"
,
"itemRatingAvg"
,
"itemClickCount"
,
"itemExpCount"
]:
for
col
in
[
"userRatingCount"
,
"userRatingAvg"
,
"userClickCount"
,
"userExpCount"
]:
new_col
=
col
+
bucket_suffix
samples
=
samples
.
withColumn
(
new_col
,
numberToBucketUdf
(
F
.
col
(
col
)))
\
.
drop
(
col
)
\
...
...
@@ -115,10 +147,10 @@ def addStaticsFeatures(samples,dataVocab):
# 方差处理
number_suffix
=
"_number"
for
col
in
[
"userRatingStddev"
,
"itemRatingStddev"
]:
for
col
in
[
"userRatingStddev"
]:
new_col
=
col
+
number_suffix
samples
=
samples
.
withColumn
(
new_col
,
F
.
when
(
F
.
col
(
col
)
.
isNull
(),
0
)
.
otherwise
(
1
/
(
F
.
col
(
col
)
+
1
)))
.
drop
(
col
)
for
col
in
[
"userCtr"
,
"itemCtr"
]:
for
col
in
[
"userCtr"
]:
new_col
=
col
+
number_suffix
samples
=
samples
.
withColumn
(
col
,
F
.
when
(
F
.
col
(
col
)
.
isNull
(),
0
)
.
otherwise
(
F
.
col
(
col
)))
.
withColumnRenamed
(
col
,
new_col
)
...
...
@@ -201,6 +233,7 @@ def addUserFeatures(samples,dataVocab,multiVocab):
samples
=
samples
.
drop
(
"userPositiveHistory"
)
# user偏好
print
(
"user 偏好数据"
)
for
c
,
v
in
multiVocab
.
items
():
new_col
=
"user"
+
"__"
+
c
samples
=
samples
.
withColumn
(
new_col
,
extractTagsUdf
(
F
.
collect_list
(
when
(
F
.
col
(
'label'
)
==
1
,
F
.
col
(
c
))
.
otherwise
(
F
.
lit
(
None
)))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
))))
...
...
@@ -210,6 +243,51 @@ def addUserFeatures(samples,dataVocab,multiVocab):
samples
=
samples
.
drop
(
new_col
)
.
drop
(
c
)
print
(
"user统计特征处理..."
)
samples
=
samples
\
.
withColumn
(
'userRatingCount'
,
F
.
format_number
(
F
.
sum
(
F
.
lit
(
1
))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userRatingAvg"
,
F
.
format_number
(
F
.
avg
(
F
.
col
(
"rating"
))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userRatingStddev"
,
F
.
format_number
(
F
.
stddev
(
F
.
col
(
"rating"
))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userClickCount"
,
F
.
format_number
(
F
.
sum
(
when
(
F
.
col
(
'label'
)
==
1
,
F
.
lit
(
1
))
.
otherwise
(
F
.
lit
(
0
)))
.
over
(
sql
.
Window
.
partitionBy
(
"userid"
)
.
orderBy
(
F
.
col
(
"timestamp"
))
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userExpCount"
,
F
.
format_number
(
F
.
sum
(
when
(
F
.
col
(
'label'
)
==
0
,
F
.
lit
(
1
))
.
otherwise
(
F
.
lit
(
0
)))
.
over
(
sql
.
Window
.
partitionBy
(
"userid"
)
.
orderBy
(
F
.
col
(
"timestamp"
))
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userCtr"
,
F
.
format_number
(
F
.
col
(
"userClickCount"
)
/
(
F
.
col
(
"userExpCount"
)
+
1
),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
filter
(
F
.
col
(
"userRatingCount"
)
>
1
)
samples
.
show
(
10
,
truncate
=
False
)
# 连续特征分桶
bucket_vocab
=
[
str
(
i
)
for
i
in
range
(
101
)]
bucket_suffix
=
"_Bucket"
for
col
in
[
"userRatingCount"
,
"userRatingAvg"
,
"userClickCount"
,
"userExpCount"
]:
new_col
=
col
+
bucket_suffix
samples
=
samples
.
withColumn
(
new_col
,
numberToBucketUdf
(
F
.
col
(
col
)))
\
.
drop
(
col
)
\
.
withColumn
(
new_col
,
F
.
when
(
F
.
col
(
new_col
)
.
isNull
(),
"0"
)
.
otherwise
(
F
.
col
(
new_col
)))
dataVocab
[
new_col
]
=
bucket_vocab
# 方差处理
number_suffix
=
"_number"
for
col
in
[
"userRatingStddev"
]:
new_col
=
col
+
number_suffix
samples
=
samples
.
withColumn
(
new_col
,
F
.
when
(
F
.
col
(
col
)
.
isNull
(),
0
)
.
otherwise
(
1
/
(
F
.
col
(
col
)
+
1
)))
.
drop
(
col
)
for
col
in
[
"userCtr"
]:
new_col
=
col
+
number_suffix
samples
=
samples
.
withColumn
(
col
,
F
.
when
(
F
.
col
(
col
)
.
isNull
(),
0
)
.
otherwise
(
F
.
col
(
col
)))
.
withColumnRenamed
(
col
,
new_col
)
samples
.
printSchema
()
samples
.
show
(
10
,
truncate
=
False
)
return
samples
...
...
@@ -302,7 +380,7 @@ def userFeaturesToRedis(samples,columns,prefix,redisKey):
print
(
prefix
,
resDatas
.
count
())
resDatas
.
repartition
(
8
)
.
foreachPartition
(
toRedis
)
def
itemFeaturesToRedis
(
samples
,
itemDF
,
columns
,
redisKey
):
def
itemFeaturesToRedis
(
itemStaticDF
,
redisKey
):
idCol
=
"item_id"
timestampCol
=
"item_timestamp"
...
...
@@ -315,28 +393,29 @@ def itemFeaturesToRedis(samples,itemDF,columns,redisKey):
conn
.
set
(
newKey
,
v
)
conn
.
expire
(
newKey
,
60
*
60
*
24
*
7
)
item_static_columns
=
[
idCol
]
+
[
"itemRatingCount_Bucket"
,
"itemRatingAvg_Bucket"
,
"itemClickCount_Bucket"
,
"itemExpCount_Bucket"
,
"itemRatingStddev_number"
,
"itemCtr_number"
]
#
item_static_columns = [idCol] + ["itemRatingCount_Bucket", "itemRatingAvg_Bucket", "itemClickCount_Bucket", "itemExpCount_Bucket","itemRatingStddev_number","itemCtr_number"]
#根据timestamp获取每个user最新的记录
prefixSamples
=
samples
.
groupBy
(
idCol
)
.
agg
(
F
.
max
(
"timestamp"
)
.
alias
(
timestampCol
))
item_static_df
=
prefixSamples
.
join
(
samples
,
on
=
[
idCol
],
how
=
'inner'
)
.
where
(
F
.
col
(
"timestamp"
)
==
F
.
col
(
timestampCol
))
item_static_df
=
item_static_df
.
select
(
*
item_static_columns
)
item_static_df
.
show
(
10
,
truncate
=
False
)
resDatas
=
itemDF
.
join
(
item_static_df
,
on
=
[
idCol
],
how
=
'left'
)
for
col
in
item_static_columns
:
res
=
"0"
if
col
.
endswith
(
"Bucket"
):
res
=
"0"
if
col
.
endswith
(
"_number"
):
res
=
0
resDatas
=
resDatas
.
withColumn
(
col
,
F
.
when
(
F
.
col
(
col
)
.
isNull
(),
res
)
.
otherwise
(
F
.
col
(
col
)))
resDatas
.
show
(
10
,
truncate
=
False
)
# prefixSamples = samples.groupBy(idCol).agg(F.max("timestamp").alias(timestampCol))
# item_static_df = prefixSamples.join(samples, on=[idCol], how='inner').where(F.col("timestamp") == F.col(timestampCol))
# item_static_df = item_static_df.select(*item_static_columns)
# item_static_df.show(10,truncate=False)
resDatas
=
resDatas
.
select
(
*
columns
)
.
distinct
()
print
(
"item size:"
,
resDatas
.
count
())
resDatas
.
repartition
(
8
)
.
foreachPartition
(
toRedis
)
# resDatas = itemDF.join(itemStaticDF, on=[idCol], how='left')
# item_static_columns = itemStaticDF.columns
#
# for col in item_static_columns:
# res = "0"
# if col.endswith("Bucket"):
# res = "0"
# if col.endswith("_number"):
# res = 0
# resDatas = resDatas.withColumn(col,F.when(F.col(col).isNull(), res).otherwise(F.col(col)))
#
# resDatas.show(10,truncate=False)
#
# resDatas = resDatas.select(*columns)
# print("item size:",resDatas.count())
itemStaticDF
.
repartition
(
8
)
.
foreachPartition
(
toRedis
)
"""
数据加载
...
...
@@ -801,8 +880,11 @@ if __name__ == '__main__':
itemDF_spark
.
printSchema
()
itemDF_spark
.
show
(
10
,
truncate
=
False
)
#user统计特征处理
itemStaticDF
=
addItemStaticFeatures
(
ratingSamplesWithLabel
,
itemDF_spark
,
dataVocab
)
# 统计数据处理
ratingSamplesWithLabel
=
addStaticsFeatures
(
ratingSamplesWithLabel
,
dataVocab
)
#
ratingSamplesWithLabel = addStaticsFeatures(ratingSamplesWithLabel,dataVocab)
samples
=
ratingSamplesWithLabel
.
join
(
itemDF_spark
,
on
=
[
'item_id'
],
how
=
'inner'
)
...
...
@@ -815,7 +897,7 @@ if __name__ == '__main__':
user_columns
=
[
c
for
c
in
samplesWithUserFeatures
.
columns
if
c
.
startswith
(
"user"
)]
print
(
"collect feature for user:{}"
.
format
(
str
(
user_columns
)))
# item columns
item_columns
=
[
c
for
c
in
samplesWithUserFeatures
.
columns
if
c
.
startswith
(
"item"
)]
item_columns
=
addItemStaticFeatures
.
columns
print
(
"collect feature for item:{}"
.
format
(
str
(
item_columns
)))
# model columns
print
(
"model columns to redis..."
)
...
...
@@ -828,16 +910,16 @@ if __name__ == '__main__':
dataVocabStr
=
json
.
dumps
(
dataVocab
,
ensure_ascii
=
False
)
open
(
configUtils
.
VOCAB_PATH
,
mode
=
'w'
,
encoding
=
'utf-8'
)
.
write
(
dataVocabStr
)
# item特征数据存入redis
itemFeaturesToRedis
(
itemStaticDF
,
FEATURE_ITEM_KEY
)
timestmp6
=
int
(
round
(
time
.
time
()))
print
(
"item feature to redis 耗时s:{}"
.
format
(
timestmp6
-
timestmp3
))
"""特征数据存入redis======================================"""
# user特征数据存入redis
userFeaturesToRedis
(
samplesWithUserFeatures
,
user_columns
,
"user"
,
FEATURE_USER_KEY
)
timestmp5
=
int
(
round
(
time
.
time
()))
print
(
"user feature to redis 耗时s:{}"
.
format
(
timestmp5
-
timestmp3
))
# item特征数据存入redis
itemFeaturesToRedis
(
samplesWithUserFeatures
,
itemDF_spark
,
item_columns
,
FEATURE_ITEM_KEY
)
timestmp6
=
int
(
round
(
time
.
time
()))
print
(
"item feature to redis 耗时s:{}"
.
format
(
timestmp6
-
timestmp5
))
print
(
"user feature to redis 耗时s:{}"
.
format
(
timestmp5
-
timestmp6
))
"""训练数据保存 ======================================"""
timestmp3
=
int
(
round
(
time
.
time
()))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment