Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
ffa71992
Commit
ffa71992
authored
Dec 31, 2021
by
宋柯
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
模型上线
parent
ef5bbbd0
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
133 additions
and
5 deletions
+133
-5
featureEngSk.py
spark/featureEngSk.py
+133
-5
No files found.
spark/featureEngSk.py
View file @
ffa71992
...
@@ -1046,6 +1046,87 @@ def get_click_exp_start_end_time(trainDays):
...
@@ -1046,6 +1046,87 @@ def get_click_exp_start_end_time(trainDays):
print
(
"click_exp_start_end_time: {}, {}"
.
format
(
startDay
,
endDay
),
flush
=
True
)
print
(
"click_exp_start_end_time: {}, {}"
.
format
(
startDay
,
endDay
),
flush
=
True
)
return
startDay
,
endDay
return
startDay
,
endDay
def
get_and_save_card_feature
(
itemEsFeatureDF
,
predictClickStaticFeatures
,
predictExpStaticFeatures
,
fields_na_value_dict
):
itemFeature
=
itemEsFeatureDF
.
join
(
predictClickStaticFeatures
,
on
=
'card_id'
,
how
=
'left'
)
.
join
(
predictExpStaticFeatures
,
on
=
'card_id'
,
how
=
'left'
)
itemFeature
=
itemFeature
.
na
.
fill
(
fields_na_value_dict
)
itemFeature
.
printSchema
()
itemFeatureDF
=
itemFeature
.
toPandas
()
conn
=
getRedisConn
()
BATCH
=
5000
Key
=
'strategy:model:rank:widedeep:service:feature'
def
concat_service_feature
(
row
):
row
=
row
[
1
]
return
'|'
.
join
(
row
[
columns_used
]
.
astype
(
str
))
columns_used
=
list
(
filter
(
lambda
c
:
c
.
startswith
(
'ITEM_'
),
list
(
itemFeatureDF
.
columns
)))
print
(
'columns_used: '
,
columns_used
)
for
start
in
range
(
0
,
len
(
itemFeatureDF
),
BATCH
):
conn
.
hmset
(
Key
,
{
row
[
1
][
'card_id'
]:
concat_service_feature
(
row
)
for
row
in
itemFeatureDF
.
iloc
[
start
:
start
+
BATCH
]
.
iterrows
()})
def
get_and_save_device_feature
(
spark
,
fields_na_value_dict
,
days
=
180
):
start
=
addDays
(
-
1
)
end
=
addDays
(
-
days
)
sql
=
"""
SELECT t1.cl_id device_id, cl_type as os
from
( --新首页卡片曝光
SELECT cl_type,cl_id
FROM online.ml_community_precise_exposure_detail
where partition_date>='{startDay}' and partition_date<='{endDay}'
and action in ('page_precise_exposure','home_choiceness_card_exposure')
and cl_id IS NOT NULL
and card_id IS NOT NULL
and cl_type IS NOT NULL
and cl_type <> ''
and is_exposure = '1'
--and page_name='home'
--and tab_name='精选'
--and page_name in ('home','search_result_more')
--and ((page_name='home' and tab_name='精选') or (page_name='category' and tab_name = '商品'))
and card_type in ('card','video')
and (get_json_object(exposure_card,'$.in_page_pos') is null or get_json_object(exposure_card,'$.in_page_pos') != 'seckill')
group by cl_type, cl_id
) t1
join
( --渠道,新老
SELECT distinct device_id
FROM online.ml_device_day_active_status
where partition_date>='{startDay}' and partition_date<='{endDay}'
AND active_type in ('1','2','4')
and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown')
AND first_channel_source_type not like 'promotion
\
_jf
\
_
%
'
) t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
"""
.
format
(
startDay
=
start
,
endDay
=
end
)
print
(
sql
)
device_feature_df
=
spark
.
sql
(
sql
)
.
toPandas
()
device_feature_df
=
device_feature_df
.
na
.
fill
(
fields_na_value_dict
)
conn
=
getRedisConn
()
BATCH
=
5000
Key
=
'strategy:model:rank:widedeep:device:feature'
for
start
in
range
(
0
,
len
(
device_feature_df
),
BATCH
):
conn
.
hmset
(
Key
,
{
row
[
1
][
'device_id'
]:
row
[
1
][
'os'
]
for
row
in
device_feature_df
.
iloc
[
start
:
start
+
BATCH
]
.
iterrows
()})
def
get_click_exp_rating_df
(
trainDays
,
spark
):
def
get_click_exp_rating_df
(
trainDays
,
spark
):
#行为数据的开始结束日期
#行为数据的开始结束日期
startDay
,
endDay
=
get_click_exp_start_end_time
(
trainDays
)
startDay
,
endDay
=
get_click_exp_start_end_time
(
trainDays
)
...
@@ -1183,6 +1264,40 @@ if __name__ == '__main__':
...
@@ -1183,6 +1264,40 @@ if __name__ == '__main__':
samples
.
printSchema
()
samples
.
printSchema
()
# root
# | -- ITEM_CATEGORY_card_id: string(nullable=false)
# | -- partition_date: string(nullable=true)
# | -- USER_CATEGORY_device_id: string(nullable=false)
# | -- USER_CATEGORY_os: string(nullable=false)
# | -- USER_CATEGORY_user_city_id: string(nullable=false)
# | -- label: integer(nullable=false)
# | -- USER_MULTI_CATEGORY_second_solutions: string(nullable=false)
# | -- USER_MULTI_CATEGORY_second_demands: string(nullable=false)
# | -- USER_MULTI_CATEGORY_second_positions: string(nullable=false)
# | -- USER_MULTI_CATEGORY_projects: string(nullable=false)
# | -- ITEM_NUMERIC_click_count_sum: double(nullable=false)
# | -- ITEM_NUMERIC_click_count_avg: double(nullable=false)
# | -- ITEM_NUMERIC_click_count_stddev: double(nullable=false)
# | -- ITEM_NUMERIC_exp_count_sum: double(nullable=false)
# | -- ITEM_NUMERIC_exp_count_avg: double(nullable=false)
# | -- ITEM_NUMERIC_exp_count_stddev: double(nullable=false)
# | -- ITEM_NUMERIC_discount: double(nullable=false)
# | -- ITEM_NUMERIC_case_count: long(nullable=false)
# | -- ITEM_NUMERIC_sales_count: long(nullable=false)
# | -- ITEM_CATEGORY_service_type: string(nullable=false)
# | -- ITEM_CATEGORY_merchant_id: string(nullable=false)
# | -- ITEM_CATEGORY_doctor_type: string(nullable=false)
# | -- ITEM_CATEGORY_doctor_id: string(nullable=false)
# | -- ITEM_CATEGORY_doctor_famous: string(nullable=false)
# | -- ITEM_CATEGORY_hospital_id: string(nullable=false)
# | -- ITEM_CATEGORY_hospital_city_tag_id: string(nullable=false)
# | -- ITEM_CATEGORY_hospital_type: string(nullable=false)
# | -- ITEM_CATEGORY_hospital_is_high_quality: string(nullable=false)
# | -- ITEM_MULTI_CATEGORY_second_demands: string(nullable=false)
# | -- ITEM_MULTI_CATEGORY_second_solutions: string(nullable=false)
# | -- ITEM_MULTI_CATEGORY_second_positions: string(nullable=false)
# | -- ITEM_MULTI_CATEGORY_projects: string(nullable=false)
# | -- ITEM_NUMERIC_sku_price: double(nullable=false)
test_samples
=
samples
.
where
(
"partition_date = '{}'"
.
format
(
endDay
))
test_samples
=
samples
.
where
(
"partition_date = '{}'"
.
format
(
endDay
))
train_samples
=
samples
.
where
(
"partition_date <> '{}'"
.
format
(
endDay
))
train_samples
=
samples
.
where
(
"partition_date <> '{}'"
.
format
(
endDay
))
...
@@ -1221,12 +1336,25 @@ if __name__ == '__main__':
...
@@ -1221,12 +1336,25 @@ if __name__ == '__main__':
#存入线上预测特征
#存入线上预测特征
# card_id | ITEM_NUMERIC_click_count_sum | ITEM_NUMERIC_click_count_avg | ITEM_NUMERIC_click_count_stddev
# card_id | ITEM_NUMERIC_click_count_sum | ITEM_NUMERIC_click_count_avg | ITEM_NUMERIC_click_count_stddev
predictClickStaticDF
=
predictClickStaticFeatures
.
toPandas
()
#
predictClickStaticDF = predictClickStaticFeatures.toPandas()
# card_id | ITEM_NUMERIC_exp_count_sum | ITEM_NUMERIC_exp_count_avg | ITEM_NUMERIC_exp_count_stddev
# card_id | ITEM_NUMERIC_exp_count_sum | ITEM_NUMERIC_exp_count_avg | ITEM_NUMERIC_exp_count_stddev
predictExpStaticDF
=
predictExpStaticFeatures
.
toPandas
()
# predictExpStaticDF = predictExpStaticFeatures.toPandas()
#
#ITEM_CATEGORY_card_id,partition_date,USER_CATEGORY_device_id,USER_CATEGORY_os,USER_CATEGORY_user_city_id,label,
#USER_MULTI_CATEGORY_second_solutions,USER_MULTI_CATEGORY_second_demands,USER_MULTI_CATEGORY_second_positions,
#USER_MULTI_CATEGORY_projects,
#ITEM_NUMERIC_click_count_sum,ITEM_NUMERIC_click_count_avg,ITEM_NUMERIC_click_count_stddev,
#ITEM_NUMERIC_exp_count_sum,ITEM_NUMERIC_exp_count_avg,ITEM_NUMERIC_exp_count_stddev,ITEM_NUMERIC_discount,ITEM_NUMERIC_case_count,
#ITEM_NUMERIC_sales_count,ITEM_CATEGORY_service_type,ITEM_CATEGORY_merchant_id,ITEM_CATEGORY_doctor_type,
#ITEM_CATEGORY_doctor_id,ITEM_CATEGORY_doctor_famous,ITEM_CATEGORY_hospital_id,ITEM_CATEGORY_hospital_city_tag_id,
#ITEM_CATEGORY_hospital_type,ITEM_CATEGORY_hospital_is_high_quality,ITEM_MULTI_CATEGORY_second_demands,
#ITEM_MULTI_CATEGORY_second_solutions,ITEM_MULTI_CATEGORY_second_positions,ITEM_MULTI_CATEGORY_projects,ITEM_NUMERIC_sku_price
#存device_id -> USER_CATEGORY_os,
get_and_save_device_feature
(
spark
,
fields_na_value_dict
)
#存card_id -> ITEM*
get_and_save_card_feature
(
itemEsFeatureDF
,
predictClickStaticFeatures
,
predictExpStaticFeatures
,
fields_na_value_dict
)
print
(
"总耗时:{} mins"
.
format
((
time
.
time
()
-
start
)
/
60
))
print
(
"总耗时:{} mins"
.
format
((
time
.
time
()
-
start
)
/
60
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment