import sys import os from datetime import date, timedelta from elasticsearch import Elasticsearch from elasticsearch.helpers import scan import time import redis from pyspark import SparkContext, SparkConf from pyspark.sql import SparkSession import pyspark.sql as sql from pyspark.sql.functions import when from pyspark.sql.types import * from pyspark.sql import functions as F from collections import defaultdict import json sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) import utils.configUtils as configUtils # import utils.connUtils as connUtils import pandas as pd # os.environ["PYSPARK_PYTHON"]="/usr/bin/python3" """ 特征工程 """ NUMBER_PRECISION = 2 VERSION = configUtils.SERVICE_VERSION FEATURE_USER_KEY = "Strategy:rec:feature:service:" + VERSION + ":user:" FEATURE_ITEM_KEY = "Strategy:rec:feature:service:" + VERSION + ":item:" FEATURE_VOCAB_KEY = "Strategy:rec:vocab:service:" + VERSION FEATURE_COLUMN_KEY = "Strategy:rec:column:service:" + VERSION ITEM_PREFIX = "item_" DATA_PATH_TRAIN = "/data/files/service_feature_{}_train.csv".format(VERSION) def getRedisConn(): pool = redis.ConnectionPool(host="172.16.50.145",password="XfkMCCdWDIU%ls$h",port=6379,db=0) conn = redis.Redis(connection_pool=pool) # conn = redis.Redis(host="172.16.50.145", port=6379, password="XfkMCCdWDIU%ls$h",db=0) # conn = redis.Redis(host="172.18.51.10", port=6379,db=0) #test return conn def parseTags(tags,i): tags_arr = tags.split(",") if len(tags_arr) >= i: return tags_arr[i-1] else: return "-1" def numberToBucket(num): res = 0 if not num: return str(res) if num >= 1000: res = 1000//10 else: res = int(num)//10 return str(res) def priceToBucket(num): res = 0 if not num: return str(res) if num >= 100000: res = 100000//1000 else: res = int(num)//1000 return str(res) numberToBucketUdf = F.udf(numberToBucket, StringType()) priceToBucketUdf = F.udf(priceToBucket, StringType()) def addItemStaticFeatures(samples,itemDF,dataVocab): # item不设置over窗口,原因:item可能一直存在,统计数据按照最新即可 print("item统计特征处理...") staticFeatures = samples.groupBy('item_id').agg(F.count(F.lit(1)).alias('itemRatingCount'), F.avg(F.col('rating')).alias('itemRatingAvg'), F.stddev(F.col('rating')).alias('itemRatingStddev'), F.sum(when(F.col('label') == 1, F.lit(1)).otherwise(F.lit(0))).alias("itemClickCount"), F.sum(when(F.col('label') == 0, F.lit(1)).otherwise(F.lit(0))).alias("itemExpCount") ).fillna(0) \ .withColumn('itemRatingStddev', F.format_number(F.col('itemRatingStddev'), NUMBER_PRECISION).cast("float")) \ .withColumn('itemRatingAvg', F.format_number(F.col('itemRatingAvg'), NUMBER_PRECISION).cast("float")) \ .withColumn('itemCtr',F.format_number(F.col("itemClickCount") / (F.col("itemExpCount") + 1), NUMBER_PRECISION).cast("float")) staticFeatures.show(20, truncate=False) staticFeatures = itemDF.join(staticFeatures, on=["item_id"], how='left') # 连续特征分桶 bucket_vocab = [str(i) for i in range(101)] bucket_suffix = "_Bucket" for col in ["itemRatingCount","itemRatingAvg", "itemClickCount", "itemExpCount"]: new_col = col + bucket_suffix staticFeatures = staticFeatures.withColumn(new_col, numberToBucketUdf(F.col(col))) \ .drop(col) \ .withColumn(new_col, F.when(F.col(new_col).isNull(), "0").otherwise(F.col(new_col))) dataVocab[new_col] = bucket_vocab # 方差处理 number_suffix = "_number" for col in ["itemRatingStddev"]: new_col = col + number_suffix staticFeatures = staticFeatures.withColumn(new_col, F.when(F.col(col).isNull(), 0).otherwise(1 / (F.col(col) + 1))).drop(col) for col in ["itemCtr"]: new_col = col + number_suffix staticFeatures = staticFeatures.withColumn(col, F.when(F.col(col).isNull(), 0).otherwise(F.col(col))).withColumnRenamed(col,new_col) print("item size:", staticFeatures.count()) staticFeatures.show(5, truncate=False) return staticFeatures def addUserStaticsFeatures(samples,dataVocab): print("user统计特征处理...") samples = samples \ .withColumn('userRatingCount',F.format_number(F.sum(F.lit(1)).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)), NUMBER_PRECISION).cast("float")) \ .withColumn("userRatingAvg", F.format_number(F.avg(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)), NUMBER_PRECISION).cast("float")) \ .withColumn("userRatingStddev", F.format_number(F.stddev(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)),NUMBER_PRECISION).cast("float")) \ .withColumn("userClickCount", F.format_number(F.sum(when(F.col('label') == 1, F.lit(1)).otherwise(F.lit(0))).over(sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1)),NUMBER_PRECISION).cast("float")) \ .withColumn("userExpCount", F.format_number(F.sum(when(F.col('label') == 0, F.lit(1)).otherwise(F.lit(0))).over(sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1)),NUMBER_PRECISION).cast("float")) \ .withColumn("userCtr", F.format_number(F.col("userClickCount")/(F.col("userExpCount")+1),NUMBER_PRECISION).cast("float")) \ .filter(F.col("userRatingCount") > 1) samples.show(20, truncate=False) # 连续特征分桶 bucket_vocab = [str(i) for i in range(101)] bucket_suffix = "_Bucket" for col in ["userRatingCount","userRatingAvg","userClickCount","userExpCount"]: new_col = col + bucket_suffix samples = samples.withColumn(new_col, numberToBucketUdf(F.col(col)))\ .drop(col)\ .withColumn(new_col,F.when(F.col(new_col).isNull(),"0").otherwise(F.col(new_col))) dataVocab[new_col] = bucket_vocab # 方差处理 number_suffix = "_number" for col in ["userRatingStddev"]: new_col = col + number_suffix samples = samples.withColumn(new_col,F.when(F.col(col).isNull(),0).otherwise(1/(F.col(col)+1))).drop(col) for col in ["userCtr"]: new_col = col + number_suffix samples = samples.withColumn(col, F.when(F.col(col).isNull(), 0).otherwise(F.col(col))).withColumnRenamed(col, new_col) samples.printSchema() samples.show(20, truncate=False) return samples def addItemFeatures(itemDF,dataVocab,multi_col_vocab): # multi_col = ['sku_tags', 'sku_show_tags','second_demands', 'second_solutions', 'second_positions'] multi_col = ['tags_v3','second_demands', 'second_solutions', 'second_positions'] onehot_col = ['id','service_type', 'merchant_id','doctor_type', 'doctor_id', 'doctor_famous', 'hospital_id', 'hospital_city_tag_id', 'hospital_type','hospital_is_high_quality'] for col in onehot_col: new_c = ITEM_PREFIX + col dataVocab[new_c] = list(set(itemDF[col].tolist())) itemDF[new_c] = itemDF[col] itemDF = itemDF.drop(columns=onehot_col) for c in multi_col: multi_col_vocab[c] = list(set(itemDF[c].tolist())) for i in range(1, 6): new_c = ITEM_PREFIX + c + "__" + str(i) itemDF[new_c] = itemDF[c].map(lambda x:parseTags(x,i)) dataVocab[new_c] = multi_col_vocab[c] # 连续特征分桶 bucket_vocab = [str(i) for i in range(101)] bucket_suffix = "_Bucket" for col in ['case_count', 'sales_count']: new_col = ITEM_PREFIX + col + bucket_suffix itemDF[new_col] = itemDF[col].map(numberToBucket) itemDF = itemDF.drop(columns=[col]) dataVocab[new_col] = bucket_vocab for col in ['sku_price']: new_col = ITEM_PREFIX + col + bucket_suffix itemDF[new_col] = itemDF[col].map(priceToBucket) itemDF = itemDF.drop(columns=[col]) dataVocab[new_col] = bucket_vocab # 连续数据处理 number_suffix = "_number" for col in ["discount"]: new_col = ITEM_PREFIX + col + number_suffix itemDF[new_col] = itemDF[col] itemDF = itemDF.drop(columns=[col]) return itemDF def extractTags(genres_list): # 根据点击列表顺序加权 genres_dict = defaultdict(int) for i,genres in enumerate(genres_list): for genre in genres.split(','): genres_dict[genre] += i sortedGenres = sorted(genres_dict.items(), key=lambda x: x[1], reverse=True) return [x[0] for x in sortedGenres] # sql版本不支持F.reverse def arrayReverse(arr): arr.reverse() return arr def addUserFeatures(samples,dataVocab,multiVocab): dataVocab["userid"] = collectColumnToVocab(samples, "userid") dataVocab["user_os"] = ["ios","android"] extractTagsUdf = F.udf(extractTags, ArrayType(StringType())) arrayReverseUdf = F.udf(arrayReverse, ArrayType(StringType())) print("user历史数据处理...") # user历史记录 samples = samples.withColumn('userPositiveHistory',F.collect_list(when(F.col('label') == 1, F.col('item_id')).otherwise(F.lit(None))).over(sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1))) samples = samples.withColumn("userPositiveHistory", arrayReverseUdf(F.col("userPositiveHistory"))) for i in range(1,11): samples = samples.withColumn("userRatedHistory"+str(i), F.when(F.col("userPositiveHistory")[i-1].isNotNull(),F.col("userPositiveHistory")[i-1]).otherwise("-1")) dataVocab["userRatedHistory"+str(i)] = dataVocab["item_id"] samples = samples.drop("userPositiveHistory") # user偏好 print("user 偏好数据") for c,v in multiVocab.items(): new_col = "user" + "__" + c samples = samples.withColumn(new_col, extractTagsUdf(F.collect_list(when(F.col('label') == 1, F.col(c)).otherwise(F.lit(None))).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)))) for i in range(1, 6): samples = samples.withColumn(new_col + "__" + str(i),F.when(F.col(new_col)[i - 1].isNotNull(), F.col(new_col)[i - 1]).otherwise("-1")) dataVocab[new_col + "__" + str(i)] = v samples = samples.drop(new_col).drop(c) print("user统计特征处理...") samples = samples \ .withColumn('userRatingCount', F.format_number( F.sum(F.lit(1)).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)), NUMBER_PRECISION).cast("float")) \ .withColumn("userRatingAvg", F.format_number( F.avg(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)), NUMBER_PRECISION).cast("float")) \ .withColumn("userRatingStddev", F.format_number( F.stddev(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)), NUMBER_PRECISION).cast("float")) \ .withColumn("userClickCount", F.format_number( F.sum(when(F.col('label') == 1, F.lit(1)).otherwise(F.lit(0))).over( sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1)), NUMBER_PRECISION).cast( "float")) \ .withColumn("userExpCount", F.format_number(F.sum(when(F.col('label') == 0, F.lit(1)).otherwise(F.lit(0))).over( sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1)), NUMBER_PRECISION).cast( "float")) \ .withColumn("userCtr", F.format_number(F.col("userClickCount") / (F.col("userExpCount") + 1), NUMBER_PRECISION).cast( "float")) \ .filter(F.col("userRatingCount") > 1) samples.show(10, truncate=False) # 连续特征分桶 bucket_vocab = [str(i) for i in range(101)] bucket_suffix = "_Bucket" for col in ["userRatingCount", "userRatingAvg", "userClickCount", "userExpCount"]: new_col = col + bucket_suffix samples = samples.withColumn(new_col, numberToBucketUdf(F.col(col))) \ .drop(col) \ .withColumn(new_col, F.when(F.col(new_col).isNull(), "0").otherwise(F.col(new_col))) dataVocab[new_col] = bucket_vocab # 方差处理 number_suffix = "_number" for col in ["userRatingStddev"]: new_col = col + number_suffix samples = samples.withColumn(new_col, F.when(F.col(col).isNull(), 0).otherwise(1 / (F.col(col) + 1))).drop(col) for col in ["userCtr"]: new_col = col + number_suffix samples = samples.withColumn(col, F.when(F.col(col).isNull(), 0).otherwise(F.col(col))).withColumnRenamed(col, new_col) samples.printSchema() samples.show(10,truncate=False) return samples def addSampleLabel(ratingSamples): ratingSamples = ratingSamples.withColumn('label', when(F.col('rating') >= 5, 1).otherwise(0)) ratingSamples.show(5, truncate=False) ratingSamples.printSchema() return ratingSamples def samplesNegAndUnion(samplesPos,samplesNeg): # 正负样本 1:4 pos_count = samplesPos.count() neg_count = samplesNeg.count() print("before filter posSize:{},negSize:{}".format(str(pos_count), str(neg_count))) samplesNeg = samplesNeg.sample(pos_count * 4 / neg_count) samples = samplesNeg.union(samplesPos) dataSize = samples.count() print("dataSize:{}".format(str(dataSize))) return samples def splitAndSaveTrainingTestSamplesByTimeStamp(samples,splitTimestamp, file_path): samples = samples.withColumn("timestampLong", F.col("timestamp").cast(LongType())) # quantile = smallSamples.stat.approxQuantile("timestampLong", [0.8], 0.05) # splitTimestamp = quantile[0] train = samples.where(F.col("timestampLong") <= splitTimestamp).drop("timestampLong") test = samples.where(F.col("timestampLong") > splitTimestamp).drop("timestampLong") print("split train size:{},test size:{}".format(str(train.count()),str(test.count()))) trainingSavePath = file_path + '_train' testSavePath = file_path + '_test' train.write.option("header", "true").option("delimiter", "|").mode('overwrite').csv(trainingSavePath) test.write.option("header", "true").option("delimiter", "|").mode('overwrite').csv(testSavePath) def collectColumnToVocab(samples,column): datas = samples.select(column).distinct().collect() vocabSet = set() for d in datas: if d[column]: vocabSet.add(str(d[column])) return list(vocabSet) def collectMutiColumnToVocab(samples,column): datas = samples.select(column).distinct().collect() tagSet = set() for d in datas: if d[column]: for tag in d[column].split(","): tagSet.add(tag) tagSet.add("-1") # 空值默认 return list(tagSet) def dataVocabToRedis(dataVocab): conn = getRedisConn() conn.set(FEATURE_VOCAB_KEY,dataVocab) conn.expire(FEATURE_VOCAB_KEY,60 * 60 * 24 * 7) def featureColumnsToRedis(columns): conn = getRedisConn() conn.set(FEATURE_COLUMN_KEY, json.dumps(columns)) conn.expire(FEATURE_COLUMN_KEY, 60 * 60 * 24 * 7) def featureToRedis(key,datas): conn = getRedisConn() for k,v in datas.items(): newKey = key+k conn.set(newKey,v) conn.expire(newKey, 60 * 60 * 24 * 7) def userFeaturesToRedis(samples,columns,prefix,redisKey): idCol = prefix+"id" timestampCol = idCol+"_timestamp" def toRedis(datas): conn = getRedisConn() for d in datas: k = d[idCol] v = json.dumps(d.asDict(), ensure_ascii=False) newKey = redisKey + k conn.set(newKey, v) conn.expire(newKey, 60 * 60 * 24 * 7) #根据timestamp获取每个user最新的记录 prefixSamples = samples.groupBy(idCol).agg(F.max("timestamp").alias(timestampCol)) resDatas = prefixSamples.join(samples, on=[idCol], how='inner').where(F.col("timestamp") == F.col(timestampCol)) resDatas = resDatas.select(*columns).distinct() resDatas.show(10,truncate=False) print(prefix, resDatas.count()) resDatas.repartition(8).foreachPartition(toRedis) def itemFeaturesToRedis(itemStaticDF,redisKey): idCol = "item_id" timestampCol = "item_timestamp" def toRedis(datas): conn = getRedisConn() for d in datas: k = d[idCol] v = json.dumps(d.asDict(), ensure_ascii=False) newKey = redisKey + k conn.set(newKey, v) conn.expire(newKey, 60 * 60 * 24 * 7) # item_static_columns = [idCol] + ["itemRatingCount_Bucket", "itemRatingAvg_Bucket", "itemClickCount_Bucket", "itemExpCount_Bucket","itemRatingStddev_number","itemCtr_number"] #根据timestamp获取每个user最新的记录 # prefixSamples = samples.groupBy(idCol).agg(F.max("timestamp").alias(timestampCol)) # item_static_df = prefixSamples.join(samples, on=[idCol], how='inner').where(F.col("timestamp") == F.col(timestampCol)) # item_static_df = item_static_df.select(*item_static_columns) # item_static_df.show(10,truncate=False) # resDatas = itemDF.join(itemStaticDF, on=[idCol], how='left') # item_static_columns = itemStaticDF.columns # # for col in item_static_columns: # res = "0" # if col.endswith("Bucket"): # res = "0" # if col.endswith("_number"): # res = 0 # resDatas = resDatas.withColumn(col,F.when(F.col(col).isNull(), res).otherwise(F.col(col))) # # resDatas.show(10,truncate=False) # # resDatas = resDatas.select(*columns) # print("item size:",resDatas.count()) itemStaticDF.repartition(8).foreachPartition(toRedis) """ 数据加载 """ CONTENT_TYPE = "service" SERVICE_HOSTS = [ {'host': "172.16.52.33", 'port': 9200}, {'host': "172.16.52.19", 'port': 9200}, {'host': "172.16.52.48", 'port': 9200}, {'host': "172.16.52.27", 'port': 9200}, {'host': "172.16.52.34", 'port': 9200} ] ES_INDEX = "gm-dbmw-service-read" ES_INDEX_TEST = "gm_test-service-read" ACTION_REG = r"""^\\d+$""" def getEsConn_test(): host_config = [{'host': '172.18.52.14', 'port': 9200}, {'host': '172.18.52.133', 'port': 9200}, {'host': '172.18.52.7', 'port': 9200}] return Elasticsearch(host_config, http_auth=('elastic', 'gm_test'), timeout=3600) def getEsConn(): return Elasticsearch(SERVICE_HOSTS, http_auth=('elastic', 'gengmei!@#'), timeout=3600) def getClickSql(start, end): sql = """ SELECT DISTINCT t1.partition_date, t1.cl_id device_id, t1.card_id,t1.time_stamp,t1.page_stay,t1.cl_type as os,t1.city_id as user_city_id FROM ( select partition_date,city_id,cl_id,business_id as card_id,time_stamp,page_stay,cl_type from online.bl_hdfs_maidian_updates where action = 'page_view' AND partition_date>='{startDay}' and partition_date<='{endDay}' AND page_name='welfare_detail' -- AND page_stay>=1 AND cl_id is not null AND cl_id != '' AND business_id is not null AND business_id != '' group by partition_date,city_id,cl_id,business_id,time_stamp,page_stay,cl_type ) AS t1 join ( --渠道,新老 SELECT distinct device_id FROM online.ml_device_day_active_status where partition_date>='{startDay}' and partition_date<='{endDay}' AND active_type in ('1','2','4') and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3' ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang' ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1' ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4' ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100' ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ' ,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown') AND first_channel_source_type not like 'promotion\_jf\_%' ) t2 on t1.cl_id = t2.device_id LEFT JOIN ( --去除黑名单 select distinct device_id from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','') AND is_abnormal_device = 'true' )t3 on t3.device_id=t2.device_id WHERE t3.device_id is null """.format(startDay=start,endDay=end) print(sql) return sql def getExposureSql(start, end): sql = """ SELECT DISTINCT t1.partition_date,t1.cl_id device_id,t1.card_id,t1.time_stamp, 0 as page_stay,cl_type as os,t1.city_id as user_city_id from ( --新首页卡片曝光 SELECT partition_date,city_id,cl_type,cl_id,card_id,max(time_stamp) as time_stamp FROM online.ml_community_precise_exposure_detail where partition_date>='{startDay}' and partition_date<='{endDay}' and action in ('page_precise_exposure','home_choiceness_card_exposure') and cl_id IS NOT NULL and card_id IS NOT NULL and is_exposure='1' --and page_name='home' --and tab_name='精选' --and page_name in ('home','search_result_more') and ((page_name='home' and tab_name='精选') or (page_name='category' and tab_name = '商品')) and card_type in ('card','video') and card_content_type in ('service') and (get_json_object(exposure_card,'$.in_page_pos') is null or get_json_object(exposure_card,'$.in_page_pos') != 'seckill') group by partition_date,city_id,cl_type,cl_id,card_id,app_session_id ) t1 join ( --渠道,新老 SELECT distinct device_id FROM online.ml_device_day_active_status where partition_date>='{startDay}' and partition_date<='{endDay}' AND active_type in ('1','2','4') and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3' ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang' ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1' ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4' ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100' ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ' ,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown') AND first_channel_source_type not like 'promotion\_jf\_%' ) t2 on t1.cl_id = t2.device_id LEFT JOIN ( --去除黑名单 select distinct device_id from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','') AND is_abnormal_device = 'true' )t3 on t3.device_id=t2.device_id WHERE t3.device_id is null """.format(startDay=start,endDay=end) print(sql) return sql def getClickSql2(start, end): sql = """ SELECT DISTINCT t1.partition_date, t1.cl_id device_id, t1.business_id card_id,t1.time_stamp time_stamp,t1.page_stay as page_stay FROM (select partition_date,cl_id,business_id,action,page_name,page_stay,time_stamp,page_stay from online.bl_hdfs_maidian_updates where action = 'page_view' AND partition_date BETWEEN '{}' AND '{}' AND page_name='welfare_detail' AND page_stay>=1 AND cl_id is not null AND cl_id != '' AND business_id is not null AND business_id != '' AND business_id rlike '{}' ) AS t1 JOIN (select partition_date,active_type,first_channel_source_type,device_id from online.ml_device_day_active_status where partition_date BETWEEN '{}' AND '{}' AND active_type IN ('1', '2', '4') AND first_channel_source_type not IN ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3' ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang' ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1' ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4' ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100' ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ' ,'promotion_shike','promotion_julang_jl03','promotion_zuimei') AND first_channel_source_type not LIKE 'promotion\\_jf\\_%') as t2 ON t1.cl_id = t2.device_id AND t1.partition_date = t2.partition_date LEFT JOIN ( select distinct device_id from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D where PARTITION_DAY = regexp_replace(DATE_SUB(current_date,1) ,'-','') AND is_abnormal_device = 'true' )dev on t1.cl_id=dev.device_id WHERE dev.device_id is null """.format(start, end, ACTION_REG, start, end) print(sql) return sql def getExposureSql2(start, end): sql = """ SELECT DISTINCT t1.partition_date,t1.cl_id device_id,t1.card_id,t1.time_stamp, 0 as page_stay FROM (SELECT partition_date,cl_id,card_id,time_stamp FROM online.ml_community_precise_exposure_detail WHERE cl_id IS NOT NULL AND card_id IS NOT NULL AND card_id rlike '{}' AND action='page_precise_exposure' AND card_content_type = '{}' AND is_exposure = 1 ) AS t1 LEFT JOIN online.ml_device_day_active_status AS t2 ON t1.cl_id = t2.device_id AND t1.partition_date = t2.partition_date LEFT JOIN ( SELECT DISTINCT device_id FROM ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D WHERE PARTITION_DAY = regexp_replace(DATE_SUB(CURRENT_DATE,1),'-','') AND is_abnormal_device = 'true' )dev ON t1.cl_id=dev.device_id WHERE dev.device_id IS NULL AND t2.partition_date BETWEEN '{}' AND '{}' AND t2.active_type IN ('1', '2', '4') AND t2.first_channel_source_type NOT IN ('yqxiu1', 'yqxiu2', 'yqxiu3', 'yqxiu4', 'yqxiu5', 'mxyc1', 'mxyc2', 'mxyc3' , 'wanpu', 'jinshan', 'jx', 'maimai', 'zhuoyi', 'huatian', 'suopingjingling', 'mocha', 'mizhe', 'meika', 'lamabang' , 'js-az1', 'js-az2', 'js-az3', 'js-az4', 'js-az5', 'jfq-az1', 'jfq-az2', 'jfq-az3', 'jfq-az4', 'jfq-az5', 'toufang1' , 'toufang2', 'toufang3', 'toufang4', 'toufang5', 'toufang6', 'TF-toufang1', 'TF-toufang2', 'TF-toufang3', 'TF-toufang4' , 'TF-toufang5', 'tf-toufang1', 'tf-toufang2', 'tf-toufang3', 'tf-toufang4', 'tf-toufang5', 'benzhan', 'promotion_aso100' , 'promotion_qianka', 'promotion_xiaoyu', 'promotion_dianru', 'promotion_malioaso', 'promotion_malioaso-shequ' , 'promotion_shike', 'promotion_julang_jl03', 'promotion_zuimei') AND t2.first_channel_source_type NOT LIKE 'promotion\\_jf\\_%' """.format(ACTION_REG, CONTENT_TYPE, start, end) print(sql) return sql def connectDoris(spark, table): return spark.read \ .format("jdbc") \ .option("driver", "com.mysql.jdbc.Driver") \ .option("url", "jdbc:mysql://172.16.30.136:3306/doris_prod") \ .option("dbtable", table) \ .option("user", "doris") \ .option("password", "o5gbA27hXHHm") \ .load() def get_spark(appName): sparkConf = SparkConf() sparkConf.set("spark.sql.crossJoin.enabled", True) sparkConf.set("spark.debug.maxToStringFields", "100") sparkConf.set("spark.tispark.plan.allow_index_double_read", False) sparkConf.set("spark.tispark.plan.allow_index_read", True) sparkConf.set("spark.hive.mapred.supports.subdirectories", True) sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True) sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") sparkConf.set("mapreduce.output.fileoutputformat.compress", False) sparkConf.set("mapreduce.map.output.compress", False) spark = (SparkSession .builder .config(conf=sparkConf) .appName(appName) .enableHiveSupport() .getOrCreate()) return spark def init_es_query(): q = { "_source": { "includes":[] }, "query": { "bool": { "must": [{"term": {"is_online": True}}], "must_not": [], "should": [] } } } return q def parseSource(_source): id = str(_source.setdefault("id",-1)) discount = _source.setdefault("discount",0) case_count = _source.setdefault("case_count",0) sales_count = _source.setdefault("sales_count",0) service_type = str(_source.setdefault("service_type",-1)) second_demands = ','.join(_source.setdefault("second_demands",["-1"])) second_solutions = ','.join(_source.setdefault("second_solutions",["-1"])) second_positions = ','.join(_source.setdefault("second_positions",["-1"])) # sku sku_list = _source.setdefault("sku_list",[]) sku_tags_list = [] sku_show_tags_list = [] sku_price_list = [] for sku in sku_list: sku_tags_list += sku.setdefault("sku_tags",[]) # sku_tags_list += sku.setdefault("sku_tags_id",[]) sku_show_tags_list.append(sku.setdefault("show_project_type_name","")) price = sku.setdefault("price", 0.0) if price > 0: sku_price_list.append(price) sku_tags = ",".join([str(i) for i in sku_tags_list]) if len(sku_tags_list) > 0 else "-1" # sku_show_tags = ",".join(sku_show_tags_list) if len(sku_show_tags_list) > 0 else "-1" sku_price = min(sku_price_list) if len(sku_price_list) > 0 else 0.0 #merchant_id merchant_id = str(_source.setdefault("merchant_id","-1")) # doctor_type id famous_doctor doctor = _source.setdefault("doctor",{}) doctor_type = str(doctor.setdefault("doctor_type","-1")) doctor_id = str(doctor.setdefault("id","-1")) doctor_famous = str(int(doctor.setdefault("famous_doctor",False))) # hospital id city_tag_id hospital_type is_high_quality hospital = doctor.setdefault("hospital", {}) hospital_id = str(hospital.setdefault("id", "-1")) hospital_city_tag_id = str(hospital.setdefault("city_tag_id", -1)) hospital_type = str(hospital.setdefault("hospital_type", "-1")) hospital_is_high_quality = str(int(hospital.setdefault("is_high_quality", False))) data = [id, discount, case_count, sales_count, service_type, merchant_id, doctor_type, doctor_id, doctor_famous, hospital_id, hospital_city_tag_id, hospital_type, hospital_is_high_quality, second_demands, second_solutions, second_positions, sku_tags, # sku_show_tags, sku_price ] return data # es中获取特征 def get_service_feature_df(): es_columns = ["id","discount", "sales_count", "doctor", "case_count", "service_type","merchant_id","second_demands", "second_solutions", "second_positions", "sku_list"] query = init_es_query() query["_source"]["includes"] = es_columns print(json.dumps(query), flush=True) es_cli = getEsConn() scan_re = scan(client=es_cli, index=ES_INDEX, query=query, scroll='3m') datas = [] for res in scan_re: _source = res['_source'] data = parseSource(_source) datas.append(data) print("item size:",len(datas)) itemColumns = ['id','discount', 'case_count', 'sales_count', 'service_type','merchant_id', 'doctor_type', 'doctor_id', 'doctor_famous', 'hospital_id', 'hospital_city_tag_id', 'hospital_type', 'hospital_is_high_quality', 'second_demands','second_solutions', 'second_positions', 'tags_v3','sku_price'] # 'sku_tags','sku_show_tags','sku_price'] df = pd.DataFrame(datas,columns=itemColumns) return df def addDays(n, format="%Y%m%d"): return (date.today() + timedelta(days=n)).strftime(format) if __name__ == '__main__': start = time.time() #入参 trainDays = int(sys.argv[1]) print('trainDays:{}'.format(trainDays),flush=True) endDay = addDays(0) startDay = addDays(-int(trainDays)) print("train_data start:{} end:{}".format(startDay,endDay)) spark = get_spark("service_feature_csv_export") spark.sparkContext.setLogLevel("ERROR") # 行为数据 clickSql = getClickSql(startDay,endDay) expSql = getExposureSql(startDay,endDay) clickDF = spark.sql(clickSql) expDF = spark.sql(expSql) # ratingDF = samplesNegAndUnion(clickDF,expDF) ratingDF = clickDF.union(expDF) ratingDF = ratingDF.withColumnRenamed("time_stamp", "timestamp")\ .withColumnRenamed("device_id", "userid")\ .withColumnRenamed("card_id", "item_id")\ .withColumnRenamed("page_stay", "rating")\ .withColumnRenamed("os", "user_os")\ .withColumn("user_city_id", F.when(F.col("user_city_id").isNull(), "-1").otherwise(F.col("user_city_id"))) print(ratingDF.columns) print(ratingDF.show(10, truncate=False)) print("添加label...") ratingSamplesWithLabel = addSampleLabel(ratingDF) df = ratingSamplesWithLabel.toPandas() df = pd.DataFrame(df) posCount = df.loc[df["label"]==0]["label"].count() negCount = df.loc[df["label"]==1]["label"].count() print("pos size:"+str(posCount),"neg size:"+str(negCount)) itemDF = get_service_feature_df() print(itemDF.columns) print(itemDF.head(10)) # itemDF.to_csv("/tmp/service_{}.csv".format(endDay)) # df.to_csv("/tmp/service_train_{}.csv".format(endDay)) # 数据字典 dataVocab = {} multiVocab = {} print("处理item特征...") timestmp1 = int(round(time.time())) itemDF = addItemFeatures(itemDF, dataVocab,multiVocab) timestmp2 = int(round(time.time())) print("处理item特征, 耗时s:{}".format(timestmp2 - timestmp1)) print("multiVocab:") for k,v in multiVocab.items(): print(k,len(v)) print("dataVocab:") for k, v in dataVocab.items(): print(k, len(v)) itemDF_spark = spark.createDataFrame(itemDF) itemDF_spark.printSchema() itemDF_spark.show(10, truncate=False) # item统计特征处理 itemStaticDF = addItemStaticFeatures(ratingSamplesWithLabel,itemDF_spark,dataVocab) # 统计数据处理 # ratingSamplesWithLabel = addStaticsFeatures(ratingSamplesWithLabel,dataVocab) samples = ratingSamplesWithLabel.join(itemDF_spark, on=['item_id'], how='inner') print("处理user特征...") samplesWithUserFeatures = addUserFeatures(samples,dataVocab,multiVocab) timestmp3 = int(round(time.time())) print("处理user特征, 耗时s:{}".format(timestmp3 - timestmp2)) # # user columns user_columns = [c for c in samplesWithUserFeatures.columns if c.startswith("user")] print("collect feature for user:{}".format(str(user_columns))) # item columns item_columns = itemStaticDF.columns print("collect feature for item:{}".format(str(item_columns))) # model columns print("model columns to redis...") model_columns = user_columns + item_columns featureColumnsToRedis(model_columns) print("数据字典save...") print("dataVocab:", str(dataVocab.keys())) vocab_path = "../vocab/{}_vocab.json".format(VERSION) dataVocabStr = json.dumps(dataVocab, ensure_ascii=False) open(configUtils.VOCAB_PATH, mode='w', encoding='utf-8').write(dataVocabStr) # item特征数据存入redis itemFeaturesToRedis(itemStaticDF, FEATURE_ITEM_KEY) timestmp6 = int(round(time.time())) print("item feature to redis 耗时s:{}".format(timestmp6 - timestmp3)) """特征数据存入redis======================================""" # user特征数据存入redis userFeaturesToRedis(samplesWithUserFeatures, user_columns, "user", FEATURE_USER_KEY) timestmp5 = int(round(time.time())) print("user feature to redis 耗时s:{}".format(timestmp5 - timestmp6)) """训练数据保存 ======================================""" timestmp3 = int(round(time.time())) train_columns = model_columns + ["label", "timestamp", "rating"] trainSamples = samplesWithUserFeatures.select(*train_columns) train_df = trainSamples.toPandas() train_df = pd.DataFrame(train_df) train_df.to_csv(DATA_PATH_TRAIN,sep="|") timestmp4 = int(round(time.time())) print("训练数据写入success 耗时s:{}".format(timestmp4 - timestmp3)) print("总耗时m:{}".format((timestmp4 - start)/60)) spark.stop()