import sys import os from datetime import date, timedelta from elasticsearch import Elasticsearch from elasticsearch.helpers import scan import time import redis from pyspark import SparkContext, SparkConf from pyspark.sql import SparkSession import pyspark.sql as sql from pyspark.sql.functions import when,col from pyspark.sql.types import * from pyspark.sql import functions as F from pyspark.ml import Pipeline from pyspark.ml.feature import StringIndexer, QuantileDiscretizer, MinMaxScaler from collections import defaultdict import json sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) import utils.configUtils as configUtils # import utils.connUtils as connUtils # os.environ["PYSPARK_PYTHON"]="/usr/bin/python3" """ 特征工程 """ ITEM_MULTI_COLUMN_EXTRA_MAP = {"first_demands": 1, "second_demands": 5, "first_solutions": 1, "second_solutions": 5, "first_positions": 1, "second_positions": 5, "tags_v3": 10, } USER_MULTI_COLUMN_EXTRA_MAP = {"first_demands": 1, "second_demands": 3, "first_solutions": 1, "second_solutions": 3, "first_positions": 1, "second_positions": 3, "tags_v3": 5, } ITEM_NUMBER_COLUMNS = ["lowest_price","smart_rank2","case_count","ordered_user_ids_count"] ITEM_CATE_COLUMNS = ["service_type","merchant_id","doctor_type","doctor_id","doctor_famous","hospital_id","hospital_city_tag_id","hospital_type","hospital_is_high_quality"] NUMBER_PRECISION = 2 VERSION = configUtils.SERVICE_VERSION FEATURE_USER_KEY = "Strategy:rec:feature:service:" + VERSION + ":user:" FEATURE_ITEM_KEY = "Strategy:rec:feature:service:" + VERSION + ":item:" FEATURE_VOCAB_KEY = "Strategy:rec:vocab:service:" + VERSION FEATURE_COLUMN_KEY = "Strategy:rec:column:service:" + VERSION TRAIN_FILE_PATH = "service_feature_" + VERSION ITEM_PREFIX = "item_" def getRedisConn(): pool = redis.ConnectionPool(host="172.16.50.145",password="XfkMCCdWDIU%ls$h",port=6379,db=0) conn = redis.Redis(connection_pool=pool) # conn = redis.Redis(host="172.16.50.145", port=6379, password="XfkMCCdWDIU%ls$h",db=0) # conn = redis.Redis(host="172.18.51.10", port=6379,db=0) #test return conn def addItemFeatures(samples,itemDF,dataVocab,multiVocab): itemDF = itemDF.withColumnRenamed("id", "itemid") # 数据过滤:无医生 itemDF = itemDF.filter(col("doctor_id") != "-1") # itemid vocabList = collectColumnToVocab(itemDF, "itemid") dataVocab["itemid"] = vocabList # null处理 for c in ITEM_NUMBER_COLUMNS: print("null count:",c,itemDF.filter(col(c).isNull()).count()) itemDF = itemDF.withColumn(ITEM_PREFIX+c,when(col(c).isNull(),0).otherwise(col(c)).cast("float")).drop(c) for c in ITEM_CATE_COLUMNS: print("null count:", c, itemDF.filter(col(c).isNull()).count()) itemDF = itemDF.withColumn(ITEM_PREFIX+c, F.when(F.col(c).isNull(), "-1").otherwise(F.col(c))).drop(c) # 字典添加 dataVocab[ITEM_PREFIX+c] = collectColumnToVocab(itemDF,ITEM_PREFIX+c) # 离散特征处理 for c, v in ITEM_MULTI_COLUMN_EXTRA_MAP.items(): print("null count:", c, itemDF.filter(col(c).isNull()).count()) itemDF = itemDF.withColumn(c, F.when(F.col(c).isNull(), "-1").otherwise(F.col(c))) multiVocab[c] = collectMutiColumnToVocab(itemDF, c) for i in range(1, v + 1): new_c = ITEM_PREFIX + c + "__" + str(i) itemDF = itemDF.withColumn(new_c, F.split(F.col(c), ",")[i - 1]) itemDF = itemDF.withColumn(new_c, F.when(F.col(new_c).isNull(), "-1").otherwise(F.col(new_c))) dataVocab[new_c] = multiVocab[c] samples = samples.join(itemDF, on=['itemid'], how='inner') # 统计特征处理 print("统计特征处理...") staticFeatures = samples.groupBy('itemid').agg(F.count(F.lit(1)).alias('itemRatingCount'), F.avg(F.col('rating')).alias('itemRatingAvg'), F.stddev(F.col('rating')).alias('itemRatingStddev')).fillna(0) \ .withColumn('itemRatingStddev', F.format_number(F.col('itemRatingStddev'), NUMBER_PRECISION).cast("float")) \ .withColumn('itemRatingAvg', F.format_number(F.col('itemRatingAvg'), NUMBER_PRECISION).cast("float")) # join item rating features samples = samples.join(staticFeatures, on=['itemid'], how='left') print("连续特征处理...") # todo 分桶比较耗时,可以考虑做非线性转换 # 连续特征处理 pipelineStage = [] # Normalization # for c in ["itemRatingAvg","itemRatingStddev"]: # pipelineStage.append(MinMaxScaler(inputCol=c, outputCol=c+"Scale")) # bucketing bucketColumns = [ITEM_PREFIX+"case_count", ITEM_PREFIX+"ordered_user_ids_count", ITEM_PREFIX+"lowest_price", "itemRatingCount", "itemRatingStddev","itemRatingAvg"] for c in bucketColumns: pipelineStage.append(QuantileDiscretizer(numBuckets=10, inputCol=c, outputCol=c + "Bucket")) featurePipeline = Pipeline(stages=pipelineStage) samples = featurePipeline.fit(samples).transform(samples) # 转string for c in bucketColumns: samples = samples.withColumn(c + "Bucket",F.col(c + "Bucket").cast("string")).drop(c) dataVocab[c + "Bucket"] = [str(float(i)) for i in range(11)] samples.printSchema() # samples.show(5, truncate=False) return samples def extractTags(genres_list): genres_dict = defaultdict(int) for genres in genres_list: for genre in genres.split(','): genres_dict[genre] += 1 sortedGenres = sorted(genres_dict.items(), key=lambda x: x[1], reverse=True) return [x[0] for x in sortedGenres] # sql版本不支持F.reverse def arrayReverse(arr): arr.reverse() return arr def addUserFeatures(samples,dataVocab,multiVocab): dataVocab["userid"] = collectColumnToVocab(samples, "userid") dataVocab["user_os"] = ["ios","android","-1"] extractTagsUdf = F.udf(extractTags, ArrayType(StringType())) arrayReverseUdf = F.udf(arrayReverse, ArrayType(StringType())) samples = samples.withColumnRenamed("cl_id","userid") print("user历史数据处理...") # user历史记录 samples = samples\ .withColumn('userPositiveHistory',F.collect_list(when(F.col('label') == 1, F.col('itemid')).otherwise(F.lit(None))).over(sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1))) \ .withColumn("userPositiveHistory", arrayReverseUdf(F.col("userPositiveHistory"))) for i in range(1,11): samples = samples.withColumn("userRatedHistory"+str(i), F.when(F.col("userPositiveHistory")[i-1].isNotNull(),F.col("userPositiveHistory")[i-1]).otherwise("-1")) dataVocab["userRatedHistory"+str(i)] = dataVocab["itemid"] samples = samples.drop("userPositiveHistory") # user历史点击分值统计 print("统计特征处理...") samples = samples\ .withColumn('userRatingCount',F.count(F.lit(1)).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1))) \ .withColumn("userRatingAvg", F.format_number(F.avg(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)),NUMBER_PRECISION).cast("float")) \ .withColumn("userRatingStddev", F.format_number(F.stddev(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)),NUMBER_PRECISION).cast("float")) \ .filter(F.col("userRatingCount") > 1) # user偏好 for c,v in USER_MULTI_COLUMN_EXTRA_MAP.items(): new_col = "user" + "__" + c samples = samples.withColumn(new_col, extractTagsUdf(F.collect_list(when(F.col('label') == 1, F.col(c)).otherwise(F.lit(None))).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)))) for i in range(1, v+1): samples = samples.withColumn(new_col + "__" + str(i),F.when(F.col(new_col)[i - 1].isNotNull(), F.col(new_col)[i - 1]).otherwise("-1")) dataVocab[new_col + "__" + str(i)] = multiVocab[c] samples = samples.drop(new_col) # .drop(c).drop(new_col) print("连续特征处理...") pipelineStage = [] # Normalization # for c in ["userRatingAvg", "userRatingStddev"]: # pipelineStage.append(MinMaxScaler(inputCol=c, outputCol=c + "Scale")) # bucketing bucketColumns = ["userRatingCount","userRatingAvg","userRatingStddev"] for c in bucketColumns: pipelineStage.append(QuantileDiscretizer(numBuckets=10, inputCol=c, outputCol=c + "Bucket")) featurePipeline = Pipeline(stages=pipelineStage) samples = featurePipeline.fit(samples).transform(samples) # 转string for c in bucketColumns: samples = samples.withColumn(c + "Bucket", F.col(c + "Bucket").cast("string")).drop(c) dataVocab[c + "Bucket"] = [str(float(i)) for i in range(11)] samples.printSchema() # samples.show(5,truncate=False) return samples def addSampleLabel(ratingSamples): ratingSamples = ratingSamples.withColumn('label', when(F.col('rating') >= 5, 1).otherwise(0)) ratingSamples.show(5, truncate=False) ratingSamples.printSchema() return ratingSamples def samplesNegAndUnion(samplesPos,samplesNeg): # 正负样本 1:4 pos_count = samplesPos.count() neg_count = samplesNeg.count() print("before filter posSize:{},negSize:{}".format(str(pos_count), str(neg_count))) samplesNeg = samplesNeg.sample(pos_count * 4 / neg_count) samples = samplesNeg.union(samplesPos) dataSize = samples.count() print("dataSize:{}".format(str(dataSize))) return samples def splitAndSaveTrainingTestSamplesByTimeStamp(samples,splitTimestamp, file_path): samples = samples.withColumn("timestampLong", F.col("timestamp").cast(LongType())) # quantile = smallSamples.stat.approxQuantile("timestampLong", [0.8], 0.05) # splitTimestamp = quantile[0] train = samples.where(F.col("timestampLong") <= splitTimestamp).drop("timestampLong") test = samples.where(F.col("timestampLong") > splitTimestamp).drop("timestampLong") print("split train size:{},test size:{}".format(str(train.count()),str(test.count()))) trainingSavePath = file_path + '_train' testSavePath = file_path + '_test' train.write.option("header", "true").option("delimiter", "|").mode('overwrite').csv(trainingSavePath) test.write.option("header", "true").option("delimiter", "|").mode('overwrite').csv(testSavePath) def collectColumnToVocab(samples,column): datas = samples.select(column).distinct().collect() vocabSet = set() for d in datas: if d[column]: vocabSet.add(str(d[column])) vocabSet.add("-1") # 空值的默认 return list(vocabSet) def collectMutiColumnToVocab(samples,column): datas = samples.select(column).distinct().collect() tagSet = set() for d in datas: if d[column]: for tag in d[column].split(","): tagSet.add(tag) tagSet.add("-1") # 空值默认 return list(tagSet) def getDataVocab(samples,model_columns): dataVocab = {} multiVocab = {} # 多值特征 for c in ITEM_MULTI_COLUMN_EXTRA_MAP.keys(): print(c) multiVocab[c] = collectMutiColumnToVocab(samples,c) samples = samples.drop(c) # id类特征 和 类别特征 for c in ["userid"]: print(c) dataVocab[c] = collectColumnToVocab(samples,c) for c in model_columns: # 判断是否以Bucket结尾 if c.endswith("Bucket"): datas = samples.select(c).distinct().collect() vocabSet = set() for d in datas: if d[c]: vocabSet.add(str(d[c])) vocabSet.add("-1")# 空值的默认 dataVocab[c] = list(vocabSet) # elif c.count("userRatedHistory") > 0: # dataVocab[c] = dataVocab["itemid"] else: # 判断是否多值离散列 for cc, v in multiVocab.items(): if c.count(cc) > 0: dataVocab[c] = v return dataVocab def dataVocabToRedis(dataVocab): conn = getRedisConn() conn.set(FEATURE_VOCAB_KEY,dataVocab) conn.expire(FEATURE_VOCAB_KEY,60 * 60 * 24 * 7) def featureColumnsToRedis(columns): conn = getRedisConn() conn.set(FEATURE_COLUMN_KEY, json.dumps(columns)) conn.expire(FEATURE_COLUMN_KEY, 60 * 60 * 24 * 7) def featureToRedis(key,datas): conn = getRedisConn() for k,v in datas.items(): newKey = key+k conn.set(newKey,v) conn.expire(newKey, 60 * 60 * 24 * 7) def collectFeaturesToDict(samples,columns,prefix): idCol = prefix+"id" timestampCol = idCol+"_timestamp" #根据timestamp获取每个user最新的记录 prefixSamples = samples.groupBy(idCol).agg(F.max("timestamp").alias(timestampCol)) resDatas = samples.join(prefixSamples, on=[idCol], how='left').where(F.col("timestamp") == F.col(timestampCol)) resDatas = resDatas.select(*columns).distinct().collect() print(prefix,len(resDatas)) return {d[idCol]:json.dumps(d.asDict(),ensure_ascii=False) for d in resDatas} def featuresToRedis(samples,columns,prefix,redisKey): idCol = prefix+"id" timestampCol = idCol+"_timestamp" def toRedis(datas): conn = getRedisConn() for d in datas: k = d[idCol] v = json.dumps(d.asDict(), ensure_ascii=False) newKey = redisKey + k conn.set(newKey, v) conn.expire(newKey, 60 * 60 * 24 * 7) #根据timestamp获取每个user最新的记录 prefixSamples = samples.groupBy(idCol).agg(F.max("timestamp").alias(timestampCol)) resDatas = samples.join(prefixSamples, on=[idCol], how='left').where(F.col("timestamp") == F.col(timestampCol)) resDatas = resDatas.select(*columns).distinct() print(prefix, resDatas.count()) resDatas.repartition(8).foreachPartition(toRedis) """ 数据加载 """ CONTENT_TYPE = "service" SERVICE_HOSTS = [ {'host': "172.16.52.33", 'port': 9200}, {'host': "172.16.52.19", 'port': 9200}, {'host': "172.16.52.48", 'port': 9200}, {'host': "172.16.52.27", 'port': 9200}, {'host': "172.16.52.34", 'port': 9200} ] ES_INDEX = "gm-dbmw-service-read" ES_INDEX_TEST = "gm_test-service-read" ACTION_REG = r"""^\\d+$""" def getEsConn_test(): host_config = [{'host': '172.18.52.14', 'port': 9200}, {'host': '172.18.52.133', 'port': 9200}, {'host': '172.18.52.7', 'port': 9200}] return Elasticsearch(host_config, http_auth=('elastic', 'gm_test'), timeout=3600) def getEsConn(): return Elasticsearch(SERVICE_HOSTS, http_auth=('elastic', 'gengmei!@#'), timeout=3600) def getClickSql(start, end): sql = """ SELECT DISTINCT t1.partition_date, t1.cl_id device_id, t1.card_id,t1.time_stamp,t1.page_stay,t1.cl_type as os FROM ( select partition_date,cl_id,business_id as card_id,time_stamp,page_stay,cl_type from online.bl_hdfs_maidian_updates where action = 'page_view' AND partition_date>='{startDay}' and partition_date<='{endDay}' AND page_name='welfare_detail' -- AND page_stay>=1 AND cl_id is not null AND cl_id != '' AND business_id is not null AND business_id != '' group by partition_date,cl_id,business_id,time_stamp,page_stay,cl_type ) AS t1 join ( --渠道,新老 SELECT distinct device_id FROM online.ml_device_day_active_status where partition_date>='{startDay}' and partition_date<='{endDay}' AND active_type in ('1','2','4') and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3' ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang' ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1' ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4' ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100' ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ' ,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown') AND first_channel_source_type not like 'promotion\_jf\_%' ) t2 on t1.cl_id = t2.device_id LEFT JOIN ( --去除黑名单 select distinct device_id from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','') AND is_abnormal_device = 'true' )t3 on t3.device_id=t2.device_id WHERE t3.device_id is null """.format(startDay=start,endDay=end) print(sql) return sql def getExposureSql(start, end): sql = """ SELECT DISTINCT t1.partition_date,t1.cl_id device_id,t1.card_id,t1.time_stamp, 0 as page_stay,cl_type as os from ( --新首页卡片曝光 SELECT partition_date,cl_id,card_id,time_stamp,cl_type FROM online.ml_community_precise_exposure_detail where partition_date>='{startDay}' and partition_date<='{endDay}' and action in ('page_precise_exposure','home_choiceness_card_exposure') and cl_id IS NOT NULL and card_id IS NOT NULL and is_exposure='1' and page_name='home' and tab_name='精选' --and page_name in ('home','search_result_more') and card_type in ('card','video') and card_content_type in ('service') and (get_json_object(exposure_card,'$.in_page_pos') is null or get_json_object(exposure_card,'$.in_page_pos') != 'seckill') group by partition_date,cl_id,card_id,time_stamp,cl_type ) t1 join ( --渠道,新老 SELECT distinct device_id FROM online.ml_device_day_active_status where partition_date>='{startDay}' and partition_date<='{endDay}' AND active_type in ('1','2','4') and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3' ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang' ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1' ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4' ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100' ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ' ,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown') AND first_channel_source_type not like 'promotion\_jf\_%' ) t2 on t1.cl_id = t2.device_id LEFT JOIN ( --去除黑名单 select distinct device_id from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','') AND is_abnormal_device = 'true' )t3 on t3.device_id=t2.device_id WHERE t3.device_id is null """.format(startDay=start,endDay=end) print(sql) return sql def getClickSql2(start, end): sql = """ SELECT DISTINCT t1.partition_date, t1.cl_id device_id, t1.business_id card_id,t1.time_stamp time_stamp,t1.page_stay as page_stay FROM (select partition_date,cl_id,business_id,action,page_name,page_stay,time_stamp,page_stay from online.bl_hdfs_maidian_updates where action = 'page_view' AND partition_date BETWEEN '{}' AND '{}' AND page_name='welfare_detail' AND page_stay>=1 AND cl_id is not null AND cl_id != '' AND business_id is not null AND business_id != '' AND business_id rlike '{}' ) AS t1 JOIN (select partition_date,active_type,first_channel_source_type,device_id from online.ml_device_day_active_status where partition_date BETWEEN '{}' AND '{}' AND active_type IN ('1', '2', '4') AND first_channel_source_type not IN ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3' ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang' ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1' ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4' ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100' ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ' ,'promotion_shike','promotion_julang_jl03','promotion_zuimei') AND first_channel_source_type not LIKE 'promotion\\_jf\\_%') as t2 ON t1.cl_id = t2.device_id AND t1.partition_date = t2.partition_date LEFT JOIN ( select distinct device_id from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D where PARTITION_DAY = regexp_replace(DATE_SUB(current_date,1) ,'-','') AND is_abnormal_device = 'true' )dev on t1.cl_id=dev.device_id WHERE dev.device_id is null """.format(start, end, ACTION_REG, start, end) print(sql) return sql def getExposureSql2(start, end): sql = """ SELECT DISTINCT t1.partition_date,t1.cl_id device_id,t1.card_id,t1.time_stamp, 0 as page_stay FROM (SELECT partition_date,cl_id,card_id,time_stamp FROM online.ml_community_precise_exposure_detail WHERE cl_id IS NOT NULL AND card_id IS NOT NULL AND card_id rlike '{}' AND action='page_precise_exposure' AND card_content_type = '{}' AND is_exposure = 1 ) AS t1 LEFT JOIN online.ml_device_day_active_status AS t2 ON t1.cl_id = t2.device_id AND t1.partition_date = t2.partition_date LEFT JOIN ( SELECT DISTINCT device_id FROM ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D WHERE PARTITION_DAY = regexp_replace(DATE_SUB(CURRENT_DATE,1),'-','') AND is_abnormal_device = 'true' )dev ON t1.cl_id=dev.device_id WHERE dev.device_id IS NULL AND t2.partition_date BETWEEN '{}' AND '{}' AND t2.active_type IN ('1', '2', '4') AND t2.first_channel_source_type NOT IN ('yqxiu1', 'yqxiu2', 'yqxiu3', 'yqxiu4', 'yqxiu5', 'mxyc1', 'mxyc2', 'mxyc3' , 'wanpu', 'jinshan', 'jx', 'maimai', 'zhuoyi', 'huatian', 'suopingjingling', 'mocha', 'mizhe', 'meika', 'lamabang' , 'js-az1', 'js-az2', 'js-az3', 'js-az4', 'js-az5', 'jfq-az1', 'jfq-az2', 'jfq-az3', 'jfq-az4', 'jfq-az5', 'toufang1' , 'toufang2', 'toufang3', 'toufang4', 'toufang5', 'toufang6', 'TF-toufang1', 'TF-toufang2', 'TF-toufang3', 'TF-toufang4' , 'TF-toufang5', 'tf-toufang1', 'tf-toufang2', 'tf-toufang3', 'tf-toufang4', 'tf-toufang5', 'benzhan', 'promotion_aso100' , 'promotion_qianka', 'promotion_xiaoyu', 'promotion_dianru', 'promotion_malioaso', 'promotion_malioaso-shequ' , 'promotion_shike', 'promotion_julang_jl03', 'promotion_zuimei') AND t2.first_channel_source_type NOT LIKE 'promotion\\_jf\\_%' """.format(ACTION_REG, CONTENT_TYPE, start, end) print(sql) return sql def connectDoris(spark, table): return spark.read \ .format("jdbc") \ .option("driver", "com.mysql.jdbc.Driver") \ .option("url", "jdbc:mysql://172.16.30.136:3306/doris_prod") \ .option("dbtable", table) \ .option("user", "doris") \ .option("password", "o5gbA27hXHHm") \ .load() def get_spark(appName): sparkConf = SparkConf() sparkConf.set("spark.sql.crossJoin.enabled", True) sparkConf.set("spark.debug.maxToStringFields", "100") sparkConf.set("spark.tispark.plan.allow_index_double_read", False) sparkConf.set("spark.tispark.plan.allow_index_read", True) sparkConf.set("spark.hive.mapred.supports.subdirectories", True) sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True) sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") sparkConf.set("mapreduce.output.fileoutputformat.compress", False) sparkConf.set("mapreduce.map.output.compress", False) spark = (SparkSession .builder .config(conf=sparkConf) .appName(appName) .enableHiveSupport() .getOrCreate()) return spark def init_es_query(): q = { "_source": { "includes":[] }, "query": { "bool": { "must": [], "must_not": [], "should": [] } } } return q def parseSource(_source): id = str(_source.setdefault("id",-1)) smart_rank2 = _source.setdefault("smart_rank2",0.0) case_count = _source.setdefault("case_count",0) service_type = str(_source.setdefault("service_type",-1)) first_demands = ','.join(_source.setdefault("first_demands",[])) second_demands = ','.join(_source.setdefault("second_demands",[])) first_solutions = ','.join(_source.setdefault("first_solutions",[])) second_solutions = ','.join(_source.setdefault("second_solutions",[])) first_positions = ','.join(_source.setdefault("first_positions",[])) second_positions = ','.join(_source.setdefault("second_positions",[])) tags_v3 = ','.join(_source.setdefault("tags_v3",[])) ordered_user_ids_count = len(_source.setdefault("ordered_user_ids",[])) lowest_price_arr = _source.setdefault("lowest_price",[]) lowest_price = lowest_price_arr[0].setdefault("price",0.0) if len(lowest_price_arr) > 0 else 0.0 #merchant_id merchant_id = _source.setdefault("merchant_id","-1") # doctor_type id famous_doctor doctor = _source.setdefault("doctor",{}) doctor_type = doctor.setdefault("doctor_type","-1") doctor_id = doctor.setdefault("id","-1") doctor_famous = str(int(doctor.setdefault("famous_doctor",False))) # hospital id city_tag_id hospital_type is_high_quality hospital = doctor.setdefault("hospital", {}) hospital_id = hospital.setdefault("id", "-1") hospital_city_tag_id = str(hospital.setdefault("city_tag_id", -1)) hospital_type = hospital.setdefault("hospital_type", "-1") hospital_is_high_quality = str(int(hospital.setdefault("is_high_quality", False))) data = [id, lowest_price, smart_rank2, case_count, service_type, ordered_user_ids_count, merchant_id, doctor_type, doctor_id, doctor_famous, hospital_id, hospital_city_tag_id, hospital_type, hospital_is_high_quality, first_demands, second_demands, first_solutions, second_solutions, first_positions, second_positions, tags_v3 ] return data # es中获取特征 def get_service_feature_df(spark): es_columns = ["id", "lowest_price", "smart_rank2", "doctor", "case_count", "service_type", "first_demands", "second_demands", "first_solutions", "second_solutions", "first_positions", "second_positions", "tags_v3","ordered_user_ids"] query = init_es_query() query["_source"]["includes"] = es_columns print(json.dumps(query), flush=True) es_cli = getEsConn() scan_re = scan(client=es_cli, index=ES_INDEX, query=query, scroll='3m') datas = [] for res in scan_re: _source = res['_source'] data = parseSource(_source) datas.append(data) print("item size:",len(datas)) dataRDD = spark.sparkContext.parallelize(datas) itemColumns = ['id', 'lowest_price', 'smart_rank2', 'case_count', 'service_type', 'ordered_user_ids_count','merchant_id', 'doctor_type', 'doctor_id', 'doctor_famous', 'hospital_id', 'hospital_city_tag_id', 'hospital_type', 'hospital_is_high_quality', 'first_demands', 'second_demands', 'first_solutions', 'second_solutions', 'first_positions', 'second_positions', 'tags_v3'] df = dataRDD.toDF(schema=itemColumns) return df # mysql中获取用户画像 def get_user_portrait(spark): return spark.read \ .format("jdbc") \ .option("driver", "com.mysql.jdbc.Driver") \ .option("url", "jdbc:mysql://172.16.50.175:3306/doris_olap") \ .option("dbtable", "user_tag3_portrait") \ .option("user", "doris") \ .option("password", "o5gbA27hXHHm") \ .load() def addDays(n, format="%Y%m%d"): return (date.today() + timedelta(days=n)).strftime(format) if __name__ == '__main__': start = time.time() #入参 trainDays = int(sys.argv[1]) print('trainDays:{}'.format(trainDays),flush=True) endDay = addDays(0) startDay = addDays(-int(trainDays)) print("train_data start:{} end:{}".format(startDay,endDay)) spark = get_spark("service_feature_csv_export") spark.sparkContext.setLogLevel("ERROR") # 行为数据 clickSql = getClickSql(startDay,endDay) expSql = getExposureSql(startDay,endDay) clickDF = spark.sql(clickSql) expDF = spark.sql(expSql) # ratingDF = samplesNegAndUnion(clickDF,expDF) ratingDF = clickDF.union(expDF) ratingDF = ratingDF.withColumnRenamed("time_stamp", "timestamp")\ .withColumnRenamed("device_id", "userid")\ .withColumnRenamed("card_id", "itemid")\ .withColumnRenamed("page_stay", "rating")\ .withColumnRenamed("os", "user_os") print(ratingDF.columns) print(ratingDF.show(10, truncate=False)) itemDF = get_service_feature_df(spark) print(itemDF.columns) print(itemDF.show(10, truncate=False)) print("添加label...") ratingSamplesWithLabel = addSampleLabel(ratingDF) posCount = ratingSamplesWithLabel.filter(F.col("label")==1).count() negCount = ratingSamplesWithLabel.filter(F.col("label")==0).count() print("pos size:"+str(posCount),"neg size:"+str(negCount)) # 数据字典 dataVocab = {} multiVocab = {} print("处理item特征...") timestmp1 = int(round(time.time())) samplesWithItemFeatures = addItemFeatures(ratingSamplesWithLabel, itemDF, dataVocab,multiVocab) timestmp2 = int(round(time.time())) print("处理item特征, 耗时s:{}".format(timestmp2 - timestmp1)) print("multiVocab:") print(multiVocab.keys()) print("处理user特征...") samplesWithUserFeatures = addUserFeatures(samplesWithItemFeatures,dataVocab,multiVocab) timestmp3 = int(round(time.time())) print("处理user特征, 耗时s:{}".format(timestmp3 - timestmp2)) # user columns user_columns = [c for c in samplesWithUserFeatures.columns if c.startswith("user")] print("collect feature for user:{}".format(str(user_columns))) # item columns item_columns = [c for c in samplesWithUserFeatures.columns if c.startswith("item")] print("collect feature for item:{}".format(str(item_columns))) # model columns print("model columns to redis...") model_columns = user_columns + item_columns featureColumnsToRedis(model_columns) print("数据字典save...") print("dataVocab:", str(dataVocab.keys())) vocab_path = "../vocab/{}_vocab.json".format(VERSION) dataVocabStr = json.dumps(dataVocab, ensure_ascii=False) open(configUtils.VOCAB_PATH, mode='w', encoding='utf-8').write(dataVocabStr) """特征数据存入redis======================================""" # user特征数据存入redis featuresToRedis(samplesWithUserFeatures, user_columns, "user", FEATURE_USER_KEY) timestmp5 = int(round(time.time())) print("user feature to redis 耗时s:{}".format(timestmp5 - timestmp3)) # userDatas = collectFeaturesToDict(samplesWithUserFeatures, user_columns, "user") # featureToRedis(FEATURE_USER_KEY, userDatas) # itemDatas = collectFeaturesToDict(samplesWithUserFeatures, item_columns, "item") # featureToRedis(FEATURE_ITEM_KEY, itemDatas) # item特征数据存入redis # todo 添加最近一个月有行为的item,待优化:扩大item范围 featuresToRedis(samplesWithUserFeatures, item_columns, "item", FEATURE_ITEM_KEY) timestmp6 = int(round(time.time())) print("item feature to redis 耗时s:{}".format(timestmp6 - timestmp5)) """训练数据保存 ======================================""" timestmp3 = int(round(time.time())) train_columns = model_columns + ["label", "timestamp", "rating"] trainSamples = samplesWithUserFeatures.select(*train_columns) print("write to hdfs start...") splitTimestamp = int(time.mktime(time.strptime(addDays(0), "%Y%m%d"))) splitAndSaveTrainingTestSamplesByTimeStamp(trainSamples, splitTimestamp, TRAIN_FILE_PATH) print("write to hdfs success...") timestmp4 = int(round(time.time())) print("数据写入hdfs 耗时s:{}".format(timestmp4 - timestmp3)) print("总耗时m:{}".format((timestmp4 - start)/60)) spark.stop()