import sys import os from datetime import date, timedelta from elasticsearch import Elasticsearch from elasticsearch.helpers import scan import time import redis from pyspark import SparkContext, SparkConf from pyspark.sql import SparkSession import pyspark.sql as sql from pyspark.sql.functions import when from pyspark.sql.types import * from pyspark.sql import functions as F from collections import defaultdict import json sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) import utils.configUtils as configUtils # import utils.connUtils as connUtils import pandas as pd import math # os.environ["PYSPARK_PYTHON"]="/usr/bin/python3" """ 特征工程 """ NUMBER_PRECISION = 2 VERSION = configUtils.SERVICE_VERSION FEATURE_USER_KEY = "Strategy:rec:feature:service:" + VERSION + ":user:" FEATURE_ITEM_KEY = "Strategy:rec:feature:service:" + VERSION + ":item:" FEATURE_VOCAB_KEY = "Strategy:rec:vocab:service:" + VERSION FEATURE_COLUMN_KEY = "Strategy:rec:column:service:" + VERSION ITEM_PREFIX = "ITEM_" USER_PREFIX = "USER_" CATEGORY_PREFIX = "CATEGORY_" MULTI_CATEGORY_PREFIX = "MULTI_CATEGORY_" NUMERIC_PREFIX = "NUMERIC_" DATA_PATH_TRAIN = "/data/files/service_feature_{}_train.csv".format(VERSION) def getRedisConn(): pool = redis.ConnectionPool(host="172.16.50.145",password="XfkMCCdWDIU%ls$h",port=6379,db=0) conn = redis.Redis(connection_pool=pool) # conn = redis.Redis(host="172.16.50.145", port=6379, password="XfkMCCdWDIU%ls$h",db=0) # conn = redis.Redis(host="172.18.51.10", port=6379,db=0) #test return conn def parseTags(tags,i): tags_arr = tags.split(",") if len(tags_arr) >= i: return tags_arr[i-1] else: return "-1" def parseTagsFromArray(tagsArray,i): if len(tagsArray) >= i: return tagsArray[i - 1] else: return "-1" def numberToBucket(num): res = 0 if not num: return str(res) num = int(num) if num >= 1000: res = 1000//10 else: res = int(num)//10 return str(res) def priceToBucket(num): res = 0 if not num: return str(res) if num >= 100000: res = 100000//1000 else: res = int(num)//1000 return str(res) numberToBucketUdf = F.udf(numberToBucket, StringType()) priceToBucketUdf = F.udf(priceToBucket, StringType()) def getItemStaticFeatures(itemStatisticDays, startDay, endDay): itemStatisticStartDay = addDays(-itemStatisticDays) itemStatisticSql = getItemStatisticSql(itemStatisticStartDay, endDay) itemStatisticDF = spark.sql(itemStatisticSql) # itemStatisticDF.show(100, False) partitionDatas = generatePartitionDates(itemStatisticDays) partitionDatasBC = spark.sparkContext.broadcast(partitionDatas) def splitPatitionDatasFlatMapFunc(row): card_id = row.card_id label = row.label partition_date_label_count_list = row.partition_date_label_count_list partition_date_label_count_dcit = dict(map(lambda s: (s.split('_')[0], s.split('_')[1]), partition_date_label_count_list)) res = [] for partition_date in partitionDatasBC.value: res.append((card_id, partition_date, label, partition_date_label_count_dcit.get(partition_date, '0'))) return res itemStatisticDF = itemStatisticDF.rdd.flatMap(splitPatitionDatasFlatMapFunc).toDF(["card_id", "partition_date", "label", "label_count"]) itemStatisticDF.createOrReplaceTempView("itemStatisticDF") itemStatisticSql = """ SELECT card_id, label, partition_date, label_count, COALESCE(SUM(label_count) OVER(PARTITION BY card_id, label ORDER BY partition_date ROWS BETWEEN {itemStatisticStartDays} PRECEDING AND 1 PRECEDING), 0) label_count_sum, COALESCE(AVG(label_count) OVER(PARTITION BY card_id, label ORDER BY partition_date ROWS BETWEEN {itemStatisticStartDays} PRECEDING AND 1 PRECEDING), 0) label_count_avg, COALESCE(STDDEV_POP(label_count) OVER(PARTITION BY card_id, label ORDER BY partition_date ROWS BETWEEN {itemStatisticStartDays} PRECEDING AND 1 PRECEDING), 0) label_count_stddev FROM itemStatisticDF WHERE partition_date >= '{startDay}' and partition_date <= '{endDay}' """.format(itemStatisticStartDays = itemStatisticStartDays, startDay = startDay, endDay = endDay) print("itemStatisticSql: {}".format(itemStatisticSql)) staticFeatures = spark.sql(itemStatisticSql) clickStaticFeatures = staticFeatures.where(F.col('label') == F.lit(1))\ .withColumnRenamed('label_count_sum', ITEM_PREFIX + NUMERIC_PREFIX + 'click_count_sum')\ .withColumnRenamed('label_count_avg', ITEM_PREFIX + NUMERIC_PREFIX + 'click_count_avg')\ .withColumnRenamed('label_count_stddev', ITEM_PREFIX + NUMERIC_PREFIX + 'click_count_stddev') expStaticFeatures = staticFeatures.where(F.col('label') == F.lit(0))\ .withColumnRenamed('label_count_sum', ITEM_PREFIX + NUMERIC_PREFIX + 'exp_count_sum')\ .withColumnRenamed('label_count_avg', ITEM_PREFIX + NUMERIC_PREFIX + 'exp_count_avg')\ .withColumnRenamed('label_count_stddev', ITEM_PREFIX + NUMERIC_PREFIX + 'exp_count_stddev') drop_columns = ['label', 'label_count'] clickStaticFeatures = clickStaticFeatures.drop(*drop_columns) # clickStaticFeatures.show(20, truncate = False) expStaticFeatures = expStaticFeatures.drop(*drop_columns) # expStaticFeatures.show(20, truncate = False) return clickStaticFeatures, expStaticFeatures # ratingDF, itemEsFeatureDF, startDay, endDay def itemStatisticFeaturesProcess(samples_iEsF_iStatisticF): # 连续特征分桶 bucket_suffix = "_Bucket" for col in ["click_count_sum", "click_count_avg", "exp_count_sum", "exp_count_avg"]: new_col = col + bucket_suffix samples_iEsF_iStatisticF = samples_iEsF_iStatisticF.withColumn(new_col, numberToBucketUdf(F.col(col))) \ .drop(col) \ .withColumn(new_col, F.when(F.col(new_col).isNull(), "0").otherwise(F.col(new_col))) # 方差处理 number_suffix = "_number" for col in ["click_count_stddev", "exp_count_stddev"]: new_col = col + number_suffix samples_iEsF_iStatisticF = samples_iEsF_iStatisticF.withColumn(new_col, F.when(F.col(col).isNull(), 0).otherwise(1 / (F.col(col) + 1))).drop(col) samples_iEsF_iStatisticF.show(20, truncate=False) return samples_iEsF_iStatisticF def addUserStaticsFeatures(samples,dataVocab): print("user统计特征处理...") samples = samples \ .withColumn('userRatingCount',F.format_number(F.sum(F.lit(1)).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)), NUMBER_PRECISION).cast("float")) \ .withColumn("userRatingAvg", F.format_number(F.avg(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)), NUMBER_PRECISION).cast("float")) \ .withColumn("userRatingStddev", F.format_number(F.stddev(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)),NUMBER_PRECISION).cast("float")) \ .withColumn("userClickCount", F.format_number(F.sum(when(F.col('label') == 1, F.lit(1)).otherwise(F.lit(0))).over(sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1)),NUMBER_PRECISION).cast("float")) \ .withColumn("userExpCount", F.format_number(F.sum(when(F.col('label') == 0, F.lit(1)).otherwise(F.lit(0))).over(sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1)),NUMBER_PRECISION).cast("float")) \ .withColumn("userCtr", F.format_number(F.col("userClickCount")/(F.col("userExpCount")+1),NUMBER_PRECISION).cast("float")) \ .filter(F.col("userRatingCount") > 1) samples.show(20, truncate=False) # 连续特征分桶 bucket_vocab = [str(i) for i in range(101)] bucket_suffix = "_Bucket" for col in ["userRatingCount","userRatingAvg","userClickCount","userExpCount"]: new_col = col + bucket_suffix samples = samples.withColumn(new_col, numberToBucketUdf(F.col(col)))\ .drop(col)\ .withColumn(new_col,F.when(F.col(new_col).isNull(),"0").otherwise(F.col(new_col))) dataVocab[new_col] = bucket_vocab # 方差处理 number_suffix = "_number" for col in ["userRatingStddev"]: new_col = col + number_suffix samples = samples.withColumn(new_col,F.when(F.col(col).isNull(),0).otherwise(1/(F.col(col)+1))).drop(col) for col in ["userCtr"]: new_col = col + number_suffix samples = samples.withColumn(col, F.when(F.col(col).isNull(), 0).otherwise(F.col(col))).withColumnRenamed(col, new_col) samples.printSchema() samples.show(20, truncate=False) return samples from collections import Iterable def flatten(items): for x in items: if isinstance(x, Iterable) and not isinstance(x, (str, bytes)): yield from flatten(x) else: yield x def itemEsFeaturesProcess(itemDF, spark): print("item es 特征工程 ") item_es_feature_start_time = int(round(time.time())) item_categoty_cols = ['id', 'service_type', 'merchant_id', 'doctor_type', 'doctor_id', 'doctor_famous', 'hospital_id', 'hospital_city_tag_id', 'hospital_type', 'hospital_is_high_quality'] item_multi_categots_cols =['tags_v3', 'second_demands', 'second_solutions', 'second_positions'] for item_categoty_col in item_categoty_cols: itemDF[ITEM_PREFIX + CATEGORY_PREFIX + item_categoty_col] = itemDF[item_categoty_col] itemDF = itemDF.drop(columns = item_categoty_cols) for item_multi_categots_col in item_multi_categots_cols: itemDF[ITEM_PREFIX + MULTI_CATEGORY_PREFIX + item_multi_categots_col] = itemDF[item_multi_categots_col] itemDF = itemDF.drop(columns = item_multi_categots_cols) item_numeric_cols = ['case_count', 'sales_count', 'discount', 'sku_price'] for item_numeric_col in item_numeric_cols: itemDF[ITEM_PREFIX + NUMERIC_PREFIX + item_numeric_col] = itemDF[item_numeric_col] itemDF = itemDF.drop(columns = [item_numeric_cols]) itemEsFeatureDF = spark.createDataFrame(itemDF) itemEsFeatureDF.printSchema() itemEsFeatureDF.show(10, truncate=False) item_es_feature_end_time = int(round(time.time())) print("item es 特征工程, 耗时: {}s".format(item_es_feature_end_time - item_es_feature_start_time)) return itemEsFeatureDF def extractTags(genres_list): # 根据点击列表顺序加权 genres_dict = defaultdict(int) for i,genres in enumerate(genres_list): for genre in genres.split(','): genres_dict[genre] += i sortedGenres = sorted(genres_dict.items(), key=lambda x: x[1], reverse=True) return [x[0] for x in sortedGenres] # sql版本不支持F.reverse def arrayReverse(arr): arr.reverse() return arr """ p —— 概率,即点击的概率,也就是 CTR n —— 样本总数,即曝光数 z —— 在正态分布里,均值 + z * 标准差会有一定的置信度。例如 z 取 1.96,就有 95% 的置信度。 Wilson区间的含义就是,就是指在一定置信度下,真实的 CTR 范围是多少 """ def wilson_ctr(num_pv, num_click): num_pv = float(num_pv) num_click = float(num_click) if num_pv * num_click == 0 or num_pv < num_click: return 0.0 z = 1.96; n = num_pv; p = num_click / num_pv; score = (p + z*z/(2*n) - z*math.sqrt((p*(1.0 - p) + z*z /(4.0*n))/n)) / (1.0 + z*z/n); return float(score); def getUserProfileFeature(spark, startDay, endDay): #连接doris_olap库 userProfileFeatureDF = spark.read.jdbc('jdbc:mysql://172.16.30.136:3306/doris_olap', 'user_tag3_portrait', numPartitions = 100, properties = { 'user': 'doris_olap', 'password': 'bA27hXasdfswuolap', 'driver': 'com.mysql.jdbc.Driver' }) userProfileFeatureDF.createOrReplaceTempView("userProfileFeatureDF") table_query = """ select date as dt, cl_id as device_id, second_solutions, second_demands, second_positions, projects from userProfileFeatureDF where date >= '{startDay}' and date <= '{endDay}' """.format(startDay = startDay, endDay = endDay) print(table_query) userProfileFeatureDF = spark.sql(table_query) def addOneDay(dt): return (date.fromisoformat(dt) + timedelta(days = 1)).strftime('%Y%m%d') addOneDay_UDF = F.udf(addOneDay, StringType()) userProfileFeatureDF = userProfileFeatureDF.withColumn('partition_date', addOneDay_UDF('dt'))\ .withColumnRenamed("second_solutions", USER_PREFIX + MULTI_CATEGORY_PREFIX + "second_solutions")\ .withColumnRenamed("second_demands", USER_PREFIX + MULTI_CATEGORY_PREFIX + "second_demands")\ .withColumnRenamed("second_positions", USER_PREFIX + MULTI_CATEGORY_PREFIX + "second_positions")\ .withColumnRenamed("projects", USER_PREFIX + MULTI_CATEGORY_PREFIX + "projects")\ .drop('dt') userProfileFeatureDF.cache() userProfileFeatureDF.show(20, False) return userProfileFeatureDF def addUserFeatures(samples): extractTagsUdf = F.udf(extractTags, ArrayType(StringType())) arrayReverseUdf = F.udf(arrayReverse, ArrayType(StringType())) ctrUdf = F.udf(wilson_ctr, FloatType()) print("user历史数据处理...") # user历史记录 samples = samples.withColumn('userPositiveHistory',F.collect_list(when(F.col('label') == 1, F.col('item_id')).otherwise(F.lit(None))).over(sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1))) samples = samples.withColumn("userPositiveHistory", arrayReverseUdf(F.col("userPositiveHistory"))) for i in range(1,11): samples = samples.withColumn("userRatedHistory"+str(i), F.when(F.col("userPositiveHistory")[i-1].isNotNull(),F.col("userPositiveHistory")[i-1]).otherwise("-1")) samples = samples.drop("userPositiveHistory") # user偏好 print("user 偏好数据") for c,v in multiVocab.items(): new_col = "user" + "__" + c samples = samples.withColumn(new_col, extractTagsUdf(F.collect_list(when(F.col('label') == 1, F.col(c)).otherwise(F.lit(None))).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)))) for i in range(1, 6): samples = samples.withColumn(new_col + "__" + str(i),F.when(F.col(new_col)[i - 1].isNotNull(), F.col(new_col)[i - 1]).otherwise("-1")) dataVocab[new_col + "__" + str(i)] = v samples = samples.drop(new_col).drop(c) print("user统计特征处理...") samples = samples \ .withColumn('userRatingCount', F.format_number( F.sum(F.lit(1)).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)), NUMBER_PRECISION).cast("float")) \ .withColumn("userRatingAvg", F.format_number( F.avg(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)), NUMBER_PRECISION).cast("float")) \ .withColumn("userRatingStddev", F.format_number( F.stddev(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)), NUMBER_PRECISION).cast("float")) \ .withColumn("userClickCount", F.format_number( F.sum(when(F.col('label') == 1, F.lit(1)).otherwise(F.lit(0))).over( sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1)), NUMBER_PRECISION).cast( "float")) \ .withColumn("userExpCount", F.format_number(F.sum(when(F.col('label') == 0, F.lit(1)).otherwise(F.lit(0))).over( sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1)), NUMBER_PRECISION).cast( "float")) \ .withColumn("userCtr",F.format_number(ctrUdf(F.col("userClickCount"),F.col("userExpCount")),NUMBER_PRECISION))\ .filter(F.col("userRatingCount") > 1) samples.show(10, truncate=False) # 连续特征分桶 bucket_vocab = [str(i) for i in range(101)] bucket_suffix = "_Bucket" for col in ["userRatingCount", "userRatingAvg", "userClickCount", "userExpCount"]: new_col = col + bucket_suffix samples = samples.withColumn(new_col, numberToBucketUdf(F.col(col))) \ .drop(col) \ .withColumn(new_col, F.when(F.col(new_col).isNull(), "0").otherwise(F.col(new_col))) dataVocab[new_col] = bucket_vocab # 方差处理 number_suffix = "_number" for col in ["userRatingStddev"]: new_col = col + number_suffix samples = samples.withColumn(new_col, F.when(F.col(col).isNull(), 0).otherwise(1 / (F.col(col) + 1))).drop(col) for col in ["userCtr"]: new_col = col + number_suffix samples = samples.withColumn(col, F.when(F.col(col).isNull(), 0).otherwise(F.col(col))).withColumnRenamed(col, new_col) samples.printSchema() samples.show(10,truncate=False) return samples def addSampleLabel(ratingSamples): ratingSamples = ratingSamples.withColumn('label', when(F.col('rating') >= 1, 1).otherwise(0)) ratingSamples.show(5, truncate=False) ratingSamples.printSchema() return ratingSamples def samplesNegAndUnion(samplesPos,samplesNeg): # 正负样本 1:4 pos_count = samplesPos.count() neg_count = samplesNeg.count() print("before filter posSize:{},negSize:{}".format(str(pos_count), str(neg_count))) samplesNeg = samplesNeg.sample(pos_count * 4 / neg_count) samples = samplesNeg.union(samplesPos) dataSize = samples.count() print("dataSize:{}".format(str(dataSize))) return samples def splitAndSaveTrainingTestSamplesByTimeStamp(samples,splitTimestamp, file_path): samples = samples.withColumn("timestampLong", F.col("timestamp").cast(LongType())) # quantile = smallSamples.stat.approxQuantile("timestampLong", [0.8], 0.05) # splitTimestamp = quantile[0] train = samples.where(F.col("timestampLong") <= splitTimestamp).drop("timestampLong") test = samples.where(F.col("timestampLong") > splitTimestamp).drop("timestampLong") print("split train size:{},test size:{}".format(str(train.count()),str(test.count()))) trainingSavePath = file_path + '_train' testSavePath = file_path + '_test' train.write.option("header", "true").option("delimiter", "|").mode('overwrite').csv(trainingSavePath) test.write.option("header", "true").option("delimiter", "|").mode('overwrite').csv(testSavePath) def collectColumnToVocab(samples,column): datas = samples.select(column).distinct().collect() vocabSet = set() for d in datas: if d[column]: vocabSet.add(str(d[column])) return list(vocabSet) def collectMutiColumnToVocab(samples,column): datas = samples.select(column).distinct().collect() tagSet = set() for d in datas: if d[column]: for tag in d[column].split(","): tagSet.add(tag) tagSet.add("-1") # 空值默认 return list(tagSet) def dataVocabToRedis(dataVocab): conn = getRedisConn() conn.set(FEATURE_VOCAB_KEY,dataVocab) conn.expire(FEATURE_VOCAB_KEY,60 * 60 * 24 * 7) def saveVocab(key, vocab): conn = getRedisConn() conn.delete(key) conn.lpush(key,vocab) conn.expire(FEATURE_VOCAB_KEY,60 * 60 * 24) def featureColumnsToRedis(columns): conn = getRedisConn() conn.set(FEATURE_COLUMN_KEY, json.dumps(columns)) conn.expire(FEATURE_COLUMN_KEY, 60 * 60 * 24 * 7) def featureToRedis(key,datas): conn = getRedisConn() for k,v in datas.items(): newKey = key+k conn.set(newKey,v) conn.expire(newKey, 60 * 60 * 24 * 7) def userFeaturesToRedis(samples,columns,prefix,redisKey): idCol = prefix+"id" timestampCol = idCol+"_timestamp" def toRedis(datas): conn = getRedisConn() for d in datas: k = d[idCol] v = json.dumps(d.asDict(), ensure_ascii=False) newKey = redisKey + k conn.set(newKey, v) conn.expire(newKey, 60 * 60 * 24 * 7) #根据timestamp获取每个user最新的记录 prefixSamples = samples.groupBy(idCol).agg(F.max("timestamp").alias(timestampCol)) resDatas = prefixSamples.join(samples, on=[idCol], how='inner').where(F.col("timestamp") == F.col(timestampCol)) resDatas = resDatas.select(*columns).distinct() resDatas.show(10,truncate=False) print(prefix, resDatas.count()) resDatas.repartition(8).foreachPartition(toRedis) def itemFeaturesToRedis(itemStaticDF,redisKey): idCol = "item_id" def toRedis(datas): conn = getRedisConn() for d in datas: k = d[idCol] v = json.dumps(d.asDict(), ensure_ascii=False) newKey = redisKey + k conn.set(newKey, v) conn.expire(newKey, 60 * 60 * 24 * 7) itemStaticDF.repartition(8).foreachPartition(toRedis) """ 数据加载 """ CONTENT_TYPE = "service" SERVICE_HOSTS = [ {'host': "172.16.52.33", 'port': 9200}, {'host': "172.16.52.19", 'port': 9200}, {'host': "172.16.52.48", 'port': 9200}, {'host': "172.16.52.27", 'port': 9200}, {'host': "172.16.52.34", 'port': 9200} ] ES_INDEX = "gm-dbmw-service-read" ES_INDEX_TEST = "gm_test-service-read" ACTION_REG = r"""^\\d+$""" def getEsConn_test(): host_config = [{'host': '172.18.52.14', 'port': 9200}, {'host': '172.18.52.133', 'port': 9200}, {'host': '172.18.52.7', 'port': 9200}] return Elasticsearch(host_config, http_auth=('elastic', 'gm_test'), timeout=3600) def getEsConn(): return Elasticsearch(SERVICE_HOSTS, http_auth=('elastic', 'gengmei!@#'), timeout=3600) def getClickSql(start, end): sql = """ SELECT t1.partition_date, t1.cl_id device_id, t1.card_id, t1.cl_type as os, t1.city_id as user_city_id FROM ( select partition_date, city_id, cl_id, business_id as card_id, cl_type from online.bl_hdfs_maidian_updates where action = 'page_view' AND partition_date>='{startDay}' and partition_date<='{endDay}' AND page_name='welfare_detail' AND page_stay >= 2 AND cl_id is not null AND cl_id != '' AND business_id is not null AND business_id != '' group by partition_date, city_id, cl_id, business_id, cl_type ) AS t1 join ( --渠道,新老 SELECT distinct device_id FROM online.ml_device_day_active_status where partition_date>='{startDay}' and partition_date<='{endDay}' AND active_type in ('1','2','4') and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3' ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang' ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1' ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4' ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100' ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ' ,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown') AND first_channel_source_type not like 'promotion\_jf\_%' ) t2 on t1.cl_id = t2.device_id LEFT JOIN ( --去除黑名单 select distinct device_id from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','') AND is_abnormal_device = 'true' )t3 on t3.device_id=t2.device_id WHERE t3.device_id is null """.format(startDay=start,endDay=end) print(sql) return sql def getExposureSql(start, end): # t1.partition_date, t1.cl_id device_id, t1.card_id, t1.time_stamp, t1.cl_type as os, t1.city_id as user_city_id sql = """ SELECT t1.partition_date, t1.cl_id device_id, t1.card_id, cl_type as os, t1.city_id as user_city_id from ( --新首页卡片曝光 SELECT partition_date,city_id,cl_type,cl_id,card_id FROM online.ml_community_precise_exposure_detail where partition_date>='{startDay}' and partition_date<='{endDay}' and action in ('page_precise_exposure','home_choiceness_card_exposure') and cl_id IS NOT NULL and card_id IS NOT NULL and is_exposure='1' --and page_name='home' --and tab_name='精选' --and page_name in ('home','search_result_more') --and ((page_name='home' and tab_name='精选') or (page_name='category' and tab_name = '商品')) and card_type in ('card','video') and card_content_type in ('service') and (get_json_object(exposure_card,'$.in_page_pos') is null or get_json_object(exposure_card,'$.in_page_pos') != 'seckill') group by partition_date, city_id, cl_type, cl_id, card_id, app_session_id ) t1 join ( --渠道,新老 SELECT distinct device_id FROM online.ml_device_day_active_status where partition_date>='{startDay}' and partition_date<='{endDay}' AND active_type in ('1','2','4') and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3' ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang' ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1' ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4' ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100' ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ' ,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown') AND first_channel_source_type not like 'promotion\_jf\_%' ) t2 on t1.cl_id = t2.device_id LEFT JOIN ( --去除黑名单 select distinct device_id from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','') AND is_abnormal_device = 'true' )t3 on t3.device_id=t2.device_id WHERE t3.device_id is null """.format(startDay=start,endDay=end) print(sql) return sql def getItemStatisticSql(start, end): sql = """ SELECT TTT.card_id, TTT.label, COLLECT_LIST(CONCAT(TTT.partition_date, '_', TTT.label_count)) partition_date_label_count_list FROM ( SELECT TT.card_id, TT.partition_date, TT.label, count(1) as label_count FROM ( SELECT T.partition_date, T.card_id, T.label FROM ( SELECT t1.partition_date, t1.cl_id device_id, t1.card_id, t1.cl_type as os, t1.city_id as user_city_id, 1 as label FROM ( select partition_date, city_id, cl_id, business_id as card_id, cl_type from online.bl_hdfs_maidian_updates where action = 'page_view' AND partition_date>='{startDay}' and partition_date<='{endDay}' AND page_name='welfare_detail' AND page_stay >= 2 AND cl_id is not null AND cl_id != '' AND business_id is not null AND business_id != '' group by partition_date, city_id, cl_id, business_id, cl_type ) AS t1 join ( --渠道,新老 SELECT distinct device_id FROM online.ml_device_day_active_status where partition_date>='{startDay}' and partition_date<='{endDay}' AND active_type in ('1','2','4') and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3' ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang' ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1' ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4' ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100' ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ' ,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown') AND first_channel_source_type not like 'promotion\_jf\_%' ) t2 on t1.cl_id = t2.device_id LEFT JOIN ( --去除黑名单 select distinct device_id from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','') AND is_abnormal_device = 'true' )t3 on t3.device_id=t2.device_id WHERE t3.device_id is null UNION SELECT t1.partition_date, t1.cl_id device_id, t1.card_id, cl_type as os, t1.city_id as user_city_id, 0 as label from ( --新首页卡片曝光 SELECT partition_date, city_id, cl_type, cl_id, card_id FROM online.ml_community_precise_exposure_detail where partition_date>='{startDay}' and partition_date<='{endDay}' and action in ('page_precise_exposure','home_choiceness_card_exposure') and cl_id IS NOT NULL and card_id IS NOT NULL and is_exposure='1' --and page_name='home' --and tab_name='精选' --and page_name in ('home','search_result_more') --and ((page_name='home' and tab_name='精选') or (page_name='category' and tab_name = '商品')) and card_type in ('card','video') and card_content_type in ('service') and (get_json_object(exposure_card,'$.in_page_pos') is null or get_json_object(exposure_card,'$.in_page_pos') != 'seckill') group by partition_date, city_id, cl_type, cl_id, card_id, app_session_id ) t1 join ( --渠道,新老 SELECT distinct device_id FROM online.ml_device_day_active_status where partition_date>='{startDay}' and partition_date<='{endDay}' AND active_type in ('1','2','4') and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3' ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang' ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1' ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4' ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100' ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ' ,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown') AND first_channel_source_type not like 'promotion\_jf\_%' ) t2 on t1.cl_id = t2.device_id LEFT JOIN ( --去除黑名单 select distinct device_id from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','') AND is_abnormal_device = 'true' )t3 on t3.device_id=t2.device_id WHERE t3.device_id is null ) T ) TT GROUP BY TT.card_id, TT.partition_date, TT.label ) TTT GROUP BY TTT.card_id, TTT.label """.format(startDay = start,endDay = end) print(sql) return sql def connectDoris(spark, table): return spark.read \ .format("jdbc") \ .option("driver", "com.mysql.jdbc.Driver") \ .option("url", "jdbc:mysql://172.16.30.136:3306/doris_prod") \ .option("dbtable", table) \ .option("user", "doris") \ .option("password", "o5gbA27hXHHm") \ .load() def get_spark(appName): sparkConf = SparkConf() sparkConf.set("spark.sql.crossJoin.enabled", True) sparkConf.set("spark.debug.maxToStringFields", "100") sparkConf.set("spark.tispark.plan.allow_index_double_read", False) sparkConf.set("spark.tispark.plan.allow_index_read", True) sparkConf.set("spark.hive.mapred.supports.subdirectories", True) sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True) sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") sparkConf.set("mapreduce.output.fileoutputformat.compress", False) sparkConf.set("mapreduce.map.output.compress", False) spark = (SparkSession .builder .config(conf=sparkConf) .appName(appName) .enableHiveSupport() .getOrCreate()) return spark def init_es_query(): q = { "_source": { "includes":[] }, "query": { "bool": { "must": [], "must_not": [], "should": [] } } } return q def parseSource(_source): id = str(_source.setdefault("id",-1)) discount = _source.setdefault("discount",0) case_count = _source.setdefault("case_count",0) sales_count = _source.setdefault("sales_count",0) service_type = str(_source.setdefault("service_type",-1)) second_demands = ','.join(_source.setdefault("second_demands",["-1"])) second_solutions = ','.join(_source.setdefault("second_solutions",["-1"])) second_positions = ','.join(_source.setdefault("second_positions",["-1"])) tags_v3 = ','.join(_source.setdefault("tags_v3", ["-1"])) # sku sku_list = _source.setdefault("sku_list",[]) sku_tags_list = [] sku_show_tags_list = [] sku_price_list = [] for sku in sku_list: sku_tags_list += sku.setdefault("sku_tags",[]) # sku_tags_list += sku.setdefault("sku_tags_id",[]) sku_show_tags_list.append(sku.setdefault("show_project_type_name","")) price = sku.setdefault("price", 0.0) if price > 0: sku_price_list.append(price) # sku_tags = ",".join([str(i) for i in sku_tags_list]) if len(sku_tags_list) > 0 else "-1" # sku_show_tags = ",".join(sku_show_tags_list) if len(sku_show_tags_list) > 0 else "-1" sku_price = min(sku_price_list) if len(sku_price_list) > 0 else 0.0 #merchant_id merchant_id = str(_source.setdefault("merchant_id","-1")) # doctor_type id famous_doctor doctor = _source.setdefault("doctor",{}) doctor_type = str(doctor.setdefault("doctor_type","-1")) doctor_id = str(doctor.setdefault("id","-1")) doctor_famous = str(int(doctor.setdefault("famous_doctor",False))) # hospital id city_tag_id hospital_type is_high_quality hospital = doctor.setdefault("hospital", {}) hospital_id = str(hospital.setdefault("id", "-1")) hospital_city_tag_id = str(hospital.setdefault("city_tag_id", -1)) hospital_type = str(hospital.setdefault("hospital_type", "-1")) hospital_is_high_quality = str(int(hospital.setdefault("is_high_quality", False))) data = [id, discount, case_count, sales_count, service_type, merchant_id, doctor_type, doctor_id, doctor_famous, hospital_id, hospital_city_tag_id, hospital_type, hospital_is_high_quality, second_demands, second_solutions, second_positions, tags_v3, # sku_show_tags, sku_price ] return data # es中获取特征 def get_item_es_feature_df(): es_columns = ["id","discount", "sales_count", "doctor", "case_count", "service_type","merchant_id","second_demands", "second_solutions", "second_positions", "sku_list","tags_v3"] query = init_es_query() query["_source"]["includes"] = es_columns print(json.dumps(query), flush=True) es_cli = getEsConn() scan_re = scan(client=es_cli, index=ES_INDEX, query=query, scroll='3m') datas = [] for res in scan_re: _source = res['_source'] data = parseSource(_source) datas.append(data) print("card size: ",len(datas)) itemColumns = ['card_id', ITEM_PREFIX + NUMERIC_PREFIX + 'discount', ITEM_PREFIX + NUMERIC_PREFIX + 'case_count', ITEM_PREFIX + NUMERIC_PREFIX + 'sales_count', ITEM_PREFIX + CATEGORY_PREFIX + 'service_type',ITEM_PREFIX + CATEGORY_PREFIX + 'merchant_id', ITEM_PREFIX + CATEGORY_PREFIX + 'doctor_type', ITEM_PREFIX + CATEGORY_PREFIX + 'doctor_id', ITEM_PREFIX + CATEGORY_PREFIX + 'doctor_famous', ITEM_PREFIX + CATEGORY_PREFIX + 'hospital_id', ITEM_PREFIX + CATEGORY_PREFIX + 'hospital_city_tag_id', ITEM_PREFIX + CATEGORY_PREFIX + 'hospital_type', ITEM_PREFIX + CATEGORY_PREFIX + 'hospital_is_high_quality', ITEM_PREFIX + MULTI_CATEGORY_PREFIX + 'second_demands', ITEM_PREFIX + MULTI_CATEGORY_PREFIX + 'second_solutions', ITEM_PREFIX + MULTI_CATEGORY_PREFIX + 'second_positions', ITEM_PREFIX + MULTI_CATEGORY_PREFIX + 'projects', ITEM_PREFIX + NUMERIC_PREFIX + 'sku_price'] itemEsFeatureDF = pd.DataFrame(datas,columns=itemColumns) itemEsFeatureDF = spark.createDataFrame(itemEsFeatureDF) itemEsFeatureDF.printSchema() # itemEsFeatureDF.show(10, truncate=False) return itemEsFeatureDF def addDays(n, format="%Y%m%d"): return (date.today() + timedelta(days=n)).strftime(format) def generatePartitionDates(partitionDates): return [addDays(-trainDay - 1) for trainDay in range(partitionDates)] #显示所有列 pd.set_option('display.max_columns', None) #显示所有行 pd.set_option('display.max_rows', None) #设置value的显示长度为100,默认为50 pd.set_option('max_colwidth',100) def get_click_exp_start_end_time(trainDays): startDay = addDays(-int(trainDays) - 1) endDay = addDays(-1) print("click_exp_start_end_time: {}, {}".format(startDay, endDay), flush=True) return startDay, endDay def get_click_exp_rating_df(trainDays, spark): #行为数据的开始结束日期 startDay, endDay = get_click_exp_start_end_time(trainDays) #获取曝光和点击行为数据 clickSql = getClickSql(startDay,endDay) expSql = getExposureSql(startDay,endDay) clickDF = spark.sql(clickSql) clickDF.createOrReplaceTempView("clickDF") clickDF.cache() print("click count: ", clickDF.count()) expDF = spark.sql(expSql) expDF.createOrReplaceTempView("expDF") expDF.cache() #曝光数据过滤掉点击数据 print("expDF 过滤点击数据前 count: ", expDF.count()) expDF = spark.sql(""" SELECT t1.partition_date, t1.device_id, t1.card_id, t1.os, t1.user_city_id FROM expDF t1 LEFT JOIN clickDF t2 ON t1.partition_date = t2.partition_date AND t1.device_id = t2.device_id AND t1.card_id = t2.card_id AND t1.os = t2.os AND t1.user_city_id = t2.user_city_id WHERE t2.device_id is NULL """) print("expDF 过滤点击数据后 count: ", expDF.count()) #添加label并且规范字段命名 clickDF = clickDF.withColumn("label", F.lit(1)) expDF = expDF.withColumn("label", F.lit(0)) ratingDF = clickDF.union(expDF) ratingDF = ratingDF.withColumn("user_city_id", F.when(F.col("user_city_id").isNull(), "-1").otherwise(F.col("user_city_id"))) ratingDF.cache() print("ratingDF.columns: {}".format(ratingDF.columns)) print(ratingDF.show(20, truncate=False)) expDF.unpersist(True) clickDF.unpersist(True) return clickDF, expDF, ratingDF, startDay, endDay if __name__ == '__main__': start = time.time() #入参 trainDays = int(sys.argv[1]) itemStatisticStartDays = int(sys.argv[2]) print('trainDays:{}'.format(trainDays),flush=True) spark = get_spark("SERVICE_FEATURE_CSV_EXPORT_SK") spark.sparkContext.setLogLevel("ERROR") #获取点击曝光数据 clickDF, expDF, ratingDF, startDay, endDay = get_click_exp_rating_df(trainDays, spark) #item Es Feature itemEsFeatureDF = get_item_es_feature_df() #计算 item 统计特征 clickStaticFeatures, expStaticFeatures = getItemStaticFeatures(itemStatisticStartDays + trainDays + 1, startDay, endDay) #user Profile Feature userProfileFeatureDF = getUserProfileFeature(spark, addDays(-trainDays - 1, format = "%Y-%m-%d"), addDays(-1, format = "%Y-%m-%d")) #样本添加 item es feature 和 item 统计 特征 samples = ratingDF.join(userProfileFeatureDF, on = ['device_id', "partition_date"], how = 'left')\ .join(clickStaticFeatures, on = ["card_id", "partition_date"], how = 'left')\ .join(expStaticFeatures, on = ["card_id", "partition_date"], how = 'left')\ .join(itemEsFeatureDF, on = ["card_id"], how = 'left') samples = samples.withColumnRenamed("card_id", ITEM_PREFIX + CATEGORY_PREFIX + "card_id")\ .withColumnRenamed("device_id", USER_PREFIX + CATEGORY_PREFIX + "device_id") \ .withColumnRenamed("os", USER_PREFIX + CATEGORY_PREFIX + "os") \ .withColumnRenamed("user_city_id", USER_PREFIX + CATEGORY_PREFIX + "user_city_id") \ .drop("timestamp") # | -- ITEM_CATEGORY_card_id: string(nullable=false) # | -- partition_date: string(nullable=true) # | -- USER_CATEGORY_device_id: string(nullable=false) # | -- USER_CATEGORY_os: string(nullable=false) # | -- USER_CATEGORY_user_city_id: string(nullable=false) # | -- label: integer(nullable=false) # | -- USER_MULTI_CATEGORY_second_solutions: string(nullable=false) # | -- USER_MULTI_CATEGORY_second_demands: string(nullable=false) # | -- USER_MULTI_CATEGORY_second_positions: string(nullable=false) # | -- USER_MULTI_CATEGORY_projects: string(nullable=false) # | -- ITEM_NUMERIC_click_count_sum: double(nullable=false) # | -- ITEM_NUMERIC_click_count_avg: double(nullable=false) # | -- ITEM_NUMERIC_click_count_stddev: double(nullable=false) # | -- ITEM_NUMERIC_exp_count_sum: double(nullable=false) # | -- ITEM_NUMERIC_exp_count_avg: double(nullable=false) # | -- ITEM_NUMERIC_exp_count_stddev: double(nullable=false) # | -- ITEM_NUMERIC_discount: double(nullable=false) # | -- ITEM_NUMERIC_case_count: long(nullable=false) # | -- ITEM_NUMERIC_sales_count: long(nullable=false) # | -- ITEM_CATEGORY_service_type: string(nullable=false) # | -- ITEM_CATEGORY_merchant_id: string(nullable=false) # | -- ITEM_CATEGORY_doctor_type: string(nullable=false) # | -- ITEM_CATEGORY_doctor_id: string(nullable=false) # | -- ITEM_CATEGORY_doctor_famous: string(nullable=false) # | -- ITEM_CATEGORY_hospital_id: string(nullable=false) # | -- ITEM_CATEGORY_hospital_city_tag_id: string(nullable=false) # | -- ITEM_CATEGORY_hospital_type: string(nullable=false) # | -- ITEM_CATEGORY_hospital_is_high_quality: string(nullable=false) # | -- ITEM_MULTI_CATEGORY_second_demands: string(nullable=false) # | -- ITEM_MULTI_CATEGORY_second_solutions: string(nullable=false) # | -- ITEM_MULTI_CATEGORY_second_positions: string(nullable=false) # | -- ITEM_MULTI_CATEGORY_projects: string(nullable=false) # | -- ITEM_NUMERIC_sku_price: double(nullable=false) # fields = [field.name for field in samples.schema.fields] multi_categoty_fields = [] categoty_fields = [] fields_na_value_dict = {} for field in fields: if field.startswith(ITEM_PREFIX + CATEGORY_PREFIX) or field.startswith(USER_PREFIX + CATEGORY_PREFIX): fields_na_value_dict[field] = '-1' categoty_fields.append(field) elif field.startswith(ITEM_PREFIX + MULTI_CATEGORY_PREFIX) or field.startswith(USER_PREFIX + MULTI_CATEGORY_PREFIX): fields_na_value_dict[field] = '-1' multi_categoty_fields.append(field) elif field.startswith(ITEM_PREFIX + NUMERIC_PREFIX) or field.startswith(USER_PREFIX + NUMERIC_PREFIX): fields_na_value_dict[field] = 0 samples = samples.na.fill(fields_na_value_dict).coalesce(1) samples.printSchema() test_samples = samples.where("partition_date = '{}'".format(endDay)) train_samples = samples.where("partition_date <> '{}'".format(endDay)) train_samples.cache() train_samples.show(20, False) write_time_start = time.time() vocab_redis_keys = [] for categoty_field in categoty_fields: output_file = "file:///home/gmuser/" + categoty_field + "_vocab" output_file = "/strategy/" + categoty_field + "_vocab" # train_samples.select(categoty_field).where(F.col(categoty_field) != '-1').where(F.col(categoty_field) != '').distinct().write.mode("overwrite").options(header="false").csv(output_file) categoty_field_rows = train_samples.select(categoty_field).where(F.col(categoty_field) != '-1').where(F.col(categoty_field) != '').distinct().collect() vocab_redis_keys.append("strategy:" + categoty_field + ":vocab") saveVocab(vocab_redis_keys[-1], list(map(lambda row: row[categoty_field], categoty_field_rows))) for multi_categoty_field in multi_categoty_fields: output_file = "file:///home/gmuser/" + multi_categoty_field + "_vocab" output_file = "/strategy/" + multi_categoty_field + "_vocab" # train_samples.selectExpr("explode(split({multi_categoty_field},','))".format(multi_categoty_field = multi_categoty_field)).where(F.col(multi_categoty_field) != '-1').distinct().write.mode("overwrite").options(header="false").csv(output_file) multi_categoty_field_rows = train_samples.selectExpr("explode(split({multi_categoty_field},',')) as {multi_categoty_field}".format(multi_categoty_field = multi_categoty_field)).where(F.col(multi_categoty_field) != '-1').where(F.col(multi_categoty_field) != '').distinct().collect() vocab_redis_keys.append("strategy:" + multi_categoty_field + ":vocab") saveVocab(vocab_redis_keys[-1], list(map(lambda row: row[multi_categoty_field], multi_categoty_field_rows))) saveVocab("strategy:all:vocab", vocab_redis_keys) output_file = "file:///home/gmuser/train_samples" output_file = "/strategy/train_samples" train_samples.write.mode("overwrite").options(header="false", sep='|').csv(output_file) output_file = "file:///home/gmuser/eval_samples" output_file = "/strategy/eval_samples" test_samples.write.mode("overwrite").options(header="false", sep='|').csv(output_file) print("训练数据写入 耗时s:{}".format(time.time() - write_time_start)) print("总耗时:{} mins".format((time.time() - start)/60)) spark.stop()