import tensorflow as tf from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import tag_constants from google.protobuf import text_format import os export_dir = 'inference/pb2saved' graph_pb = '/Users/edz/PycharmProjects/serviceRec/train/saved_model_test/1640591747/saved_model.pb' if os.path.exists(export_dir): os.rmdir(export_dir) builder = tf.saved_model.builder.SavedModelBuilder(export_dir) with tf.gfile.GFile(graph_pb, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) sigs = {} with tf.Session(graph=tf.Graph()) as sess: # name="" is important to ensure we don't get spurious prefixing tf.import_graph_def(graph_def, name="") g = tf.get_default_graph() print(sess.graph.get_name_scope()) print(sess.graph.get_all_collection_keys()) print(sess.graph.get_operations()) # input_ids = sess.graph.get_tensor_by_name( # "input_ids:0") # input_mask = sess.graph.get_tensor_by_name( # "input_mask:0") # segment_ids = sess.graph.get_tensor_by_name( # "segment_ids:0") # probabilities = g.get_tensor_by_name("loss/pred_prob:0") # sigs[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = \ # tf.saved_model.signature_def_utils.predict_signature_def( # { # "input_ids": input_ids, # "input_mask": input_mask, # "segment_ids": segment_ids # }, { # "probabilities": probabilities # }) # builder.add_meta_graph_and_variables(sess, # [tag_constants.SERVING], # signature_def_map=sigs) # builder.save()