# -*- coding:UTF-8 -*-
# @Time  : 2020/9/11 13:51
# @File  : func_from_es_get_article.py
# @email : litao@igengmei.com
# @author : litao
import pymysql
from elasticsearch import Elasticsearch

exists_es_dic = {}
es = Elasticsearch([
    {
        'host': '172.16.31.17',
        'port': 9200,
    }, {
        'host': '172.16.31.11',
        'port': 9200,
    }])


def con_sql_jerry_prod(sql):
    # 从数据库的表里获取数据
    db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy',
                         db='jerry_prod')
    cursor = db.cursor()
    cursor.execute(sql)
    result = cursor.fetchall()
    db.close()
    return result


def con_sql_doris_prod(sql):
    # 从数据库的表里获取数据
    db = pymysql.connect(host='172.16.30.136', port=3306, user='doris', passwd='o5gbA27hXHHm',
                         db='doris_prod')
    cursor = db.cursor()
    cursor.execute(sql)
    result = cursor.fetchall()
    db.close()
    return result


def get_device_num_from_es(word):
    results = es.search(
        index='gm-dbmw-device',
        doc_type='doc',
        timeout='10s',
        size=0,
        body={
            "query": {
                "bool": {
                    "should": [
                        {
                            "nested": {
                                "path": "first_demands",
                                "query": {
                                    "bool": {
                                        "must": [
                                            {
                                                "terms": {
                                                    "first_demands.name": [
                                                        word
                                                    ]
                                                }
                                            }
                                        ]
                                    }
                                }
                            }
                        },
                        {
                            "nested": {
                                "path": "second_demands",
                                "query": {
                                    "bool": {
                                        "must": [
                                            {
                                                "terms": {
                                                    "second_demands.name": [
                                                        word
                                                    ]
                                                }
                                            }
                                        ]
                                    }
                                }
                            }
                        },
                        {
                            "nested": {
                                "path": "first_solutions",
                                "query": {
                                    "bool": {
                                        "must": [
                                            {
                                                "terms": {
                                                    "first_solutions.name": [
                                                        word
                                                    ]
                                                }
                                            }
                                        ]
                                    }
                                }
                            }
                        },
                        {
                            "nested": {
                                "path": "second_solutions",
                                "query": {
                                    "bool": {
                                        "must": [
                                            {
                                                "terms": {
                                                    "second_solutions.name": [
                                                        word
                                                    ]
                                                }
                                            }
                                        ]
                                    }
                                }
                            }
                        },
                        {
                            "nested": {
                                "path": "first_positions",
                                "query": {
                                    "bool": {
                                        "must": [
                                            {
                                                "terms": {
                                                    "first_positions.name": [
                                                        word
                                                    ]
                                                }
                                            }
                                        ]
                                    }
                                }
                            }
                        },
                        {
                            "nested": {
                                "path": "second_positions",
                                "query": {
                                    "bool": {
                                        "must": [
                                            {
                                                "terms": {
                                                    "second_positions.name": [
                                                        word
                                                    ]
                                                }
                                            }
                                        ]
                                    }
                                }
                            }
                        },
                        {
                            "nested": {
                                "path": "projects",
                                "query": {
                                    "bool": {
                                        "must": [
                                            {
                                                "terms": {
                                                    "projects.name": [
                                                        word
                                                    ]
                                                }
                                            }
                                        ]
                                    }
                                }
                            }
                        }

                    ],
                    "minimum_should_match": 1
                }
            }
        }
    )
    tractate_content_num = results["hits"]["total"]
    return tractate_content_num


def get_tractate_tags_from_es(doc_id,id_type='tractate'):
    # print(doc_id)
    body = {
        "query": {
            "bool": {
                "filter": [
                    {"term": {"_id": doc_id}}
                ]
            }
        }
    }
    if id_type == 'tractate':
    # tractate
        results = es.search(
            index='gm-dbmw-tractate-read',
            doc_type='tractate',
            timeout='10s',
            body=body
        )
    # print(results)
    elif id_type == 'diary':
        results = es.search(
            index='gm-dbmw-diary-read',
            doc_type='diary',
            timeout='10s',
            body=body
        )
    return results["hits"]['hits'][0]


def get_es_article_num(tag_dict,
                       allow_tag=["first_demands", "second_demands", "first_solutions", "second_solutions", "positions",
                                  "second_positions", "tags_v3"]):
    article_dict = {
        "first_demands": [],
        "second_demands": [],
        "first_solutions": [],
        "second_solutions": [],
        "positions": [],
        "second_positions": [],
        "tags_v3": [],
    }
    for key in list(article_dict.keys()):
        if key not in allow_tag:
            article_dict.pop(key)

    for tag_type in tag_dict:
        for tag_name in tag_dict[tag_type]:
            if tag_name in exists_es_dic:
                article_dict[tag_type].append(exists_es_dic[tag_name])
                continue
            body = {
                "query": {
                    "bool": {
                        "minimum_should_match": 1,
                        "should": [],
                        "must": [
                            {
                                "term": {
                                    "is_online": True
                                }
                            }, {
                                "terms": {
                                    "content_level": [6, 5, 4, 3.5, 3]
                                }
                            }, {
                                "range": {
                                    "content_length": {
                                        "gte": 30
                                    }
                                }
                            }],

                    }
                },
            }
            body["query"]["bool"]["must"].append({"term": {tag_type: tag_name}})
            results = es.search(
                index='gm-dbmw-answer-read',
                doc_type='answer',
                timeout='10s',
                size=0,
                body=body
            )
            answer_content_num = results["hits"]["total"]

            body = {
                "query": {
                    "bool": {
                        "minimum_should_match": 1,
                        "should": [],
                        "must": [{"term": {"is_online": True}}, {
                            "terms":
                                {"content_level": [6, 5, 4, 3.5, 3]}
                        }]
                    }
                }
            }
            body["query"]["bool"]["must"].append({"term": {tag_type: tag_name}})
            # tractate
            results = es.search(
                index='gm-dbmw-tractate-read',
                doc_type='tractate',
                timeout='10s',
                size=0,
                body=body
            )

            tractate_content_num = results["hits"]["total"]

            body = {
                "query": {
                    "bool": {
                        "minimum_should_match": 1,
                        "should": [],
                        "must": [{"term": {"is_online": True}}, {
                            "term": {
                                "has_cover": True
                            }
                        }, {"term": {
                            "is_sink": False
                        }
                                 }, {
                                     "term": {
                                         "has_after_cover": True
                                     }
                                 }, {
                                     "term": {
                                         "has_before_cover": True
                                     }
                                 }, {"range": {"content_level": {"gte": "3"}}},
                                 {
                                     "term": {
                                         "content_simi_bol_show": 0
                                     }
                                 }
                                 ]
                    }
                },
            }
            body["query"]["bool"]["must"].append({"term": {tag_type: tag_name}})
            ### diary 日记
            results = es.search(
                index='gm-dbmw-diary-read',
                doc_type='diary',
                timeout='10s',
                size=0,
                body=body
            )
            diary_content_num = results["hits"]["total"]
            total_num = answer_content_num + tractate_content_num + diary_content_num
            data_dic = {tag_name: (answer_content_num, tractate_content_num, diary_content_num, total_num)}
            # print(data_dic)
            exists_es_dic[tag_name] = data_dic
            article_dict[tag_type].append(data_dic)

    return article_dict


def get_user_post_from_mysql(sql):
    second_demands_card_id_list = []
    tags_v3_card_id_list = []
    second_demands_count_dict = {}
    tags_v3_count_dict = {}
    second_demands_tractate_dict = {}
    tags_v3_tractate_dict = {}
    # print(sql)
    sql_res = con_sql_doris_prod(sql)
    for card_id in sql_res:
        # print(type(card_id[0]),card_id)
        es_res = get_tractate_tags_from_es(card_id[0],id_type='tractate')
        second_demands_tractate_dict[card_id[0]] = es_res["_source"]["second_demands"]
        tags_v3_tractate_dict[card_id[0]] = es_res["_source"]["tags_v3"]

        for position in es_res["_source"]["second_demands"]:
            if position in second_demands_count_dict:
                second_demands_count_dict[position] += 1
            else:
                second_demands_count_dict[position] = 1
                second_demands_card_id_list.append(int(card_id[0]))
        for tag in es_res["_source"]["tags_v3"]:
            if tag in tags_v3_count_dict:
                tags_v3_count_dict[tag] += 1
            else:
                tags_v3_count_dict[tag] = 1
                tags_v3_card_id_list.append(int(card_id[0]))
    # print(card_id_list)
    return second_demands_count_dict, tags_v3_count_dict, second_demands_card_id_list,tags_v3_card_id_list,second_demands_tractate_dict,tags_v3_tractate_dict



def get_diary_from_mysql(sql,id_type='tractate'):
    second_demands_card_id_list = []
    tags_v3_card_id_list = []
    second_demands_count_dict = {}
    tags_v3_count_dict = {}
    second_demands_tractate_dict = {}
    tags_v3_tractate_dict = {}
    sql_res = con_sql_doris_prod(sql)
    for card_id in sql_res:
        # print(type(card_id[0]),card_id)
        es_res = get_tractate_tags_from_es(card_id[0],id_type=id_type)
        second_demands_tractate_dict[card_id[0]] = es_res["_source"]["second_demands"]
        tags_v3_tractate_dict[card_id[0]] = es_res["_source"]["tags_v3"]

        for position in es_res["_source"]["second_demands"]:
            if position in second_demands_count_dict:
                second_demands_count_dict[position] += 1
            else:
                second_demands_count_dict[position] = 1
                second_demands_card_id_list.append(int(card_id[0]))
        for tag in es_res["_source"]["tags_v3"]:
            if tag in tags_v3_count_dict:
                tags_v3_count_dict[tag] += 1
            else:
                tags_v3_count_dict[tag] = 1
                tags_v3_card_id_list.append(int(card_id[0]))
    # print(card_id_list)
    return second_demands_count_dict, tags_v3_count_dict, second_demands_card_id_list,tags_v3_card_id_list,second_demands_tractate_dict,tags_v3_tractate_dict