# -*- coding:UTF-8 -*- # @Time : 2020/9/8 13:39 # @File : spark_test.py # @email : litao@igengmei.com # @author : litao # -*- coding:UTF-8 -*- # @Time : 2020/9/4 17:07 # @File : search_meigou_ctr.py # @email : litao@igengmei.com # @author : litao import hashlib import json import pymysql import xlwt, datetime import redis # from pyhive import hive from maintenance.func_send_email_with_file import send_file_email from typing import Dict, List from elasticsearch_7 import Elasticsearch from elasticsearch_7.helpers import scan import sys import time from pyspark import SparkConf from pyspark.sql import SparkSession, DataFrame # from pyspark.sql.functions import lit # import pytispark.pytispark as pti def con_sql(sql): # 从数据库的表里获取数据 db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy', db='jerry_prod') cursor = db.cursor() cursor.execute(sql) result = cursor.fetchall() db.close() return result startTime = time.time() sparkConf = SparkConf() sparkConf.set("spark.sql.crossJoin.enabled", True) sparkConf.set("spark.debug.maxToStringFields", "100") sparkConf.set("spark.tispark.plan.allow_index_double_read", False) sparkConf.set("spark.tispark.plan.allow_index_read", True) sparkConf.set("spark.hive.mapred.supports.subdirectories", True) sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True) sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") sparkConf.set("mapreduce.output.fileoutputformat.compress", False) sparkConf.set("mapreduce.map.output.compress", False) sparkConf.set("prod.gold.jdbcuri", "jdbc:mysql://172.16.30.136/doris_prod?user=doris&password=o5gbA27hXHHm&rewriteBatchedStatements=true") sparkConf.set("prod.mimas.jdbcuri", "jdbc:mysql://172.16.30.138/mimas_prod?user=mimas&password=GJL3UJe1Ck9ggL6aKnZCq4cRvM&rewriteBatchedStatements=true") sparkConf.set("prod.gaia.jdbcuri", "jdbc:mysql://172.16.30.143/zhengxing?user=work&password=BJQaT9VzDcuPBqkd&rewriteBatchedStatements=true") sparkConf.set("prod.tidb.jdbcuri", "jdbc:mysql://172.16.40.158:4000/eagle?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true") sparkConf.set("prod.jerry.jdbcuri", "jdbc:mysql://172.16.40.158:4000/jerry_prod?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true") sparkConf.set("prod.tispark.pd.addresses", "172.16.40.158:2379") sparkConf.set("prod.tispark.pd.addresses", "172.16.40.170:4000") sparkConf.set("prod.tidb.database", "jerry_prod") sparkConf.setAppName("test") spark = (SparkSession.builder.config(conf=sparkConf).config("spark.sql.extensions", "org.apache.spark.sql.TiExtensions") .config("spark.tispark.pd.addresses", "172.16.40.170:2379").enableHiveSupport().getOrCreate()) spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/brickhouse-0.7.1-SNAPSHOT.jar") spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/hive-udf-1.0-SNAPSHOT.jar") spark.sql("CREATE TEMPORARY FUNCTION json_map AS 'brickhouse.udf.json.JsonMapUDF'") spark.sql("CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJsonFormatCheck'") spark.sql("CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'") huidu_device_id_sql = r""" select t2.device_id from --(select distinct(first_device) as device_id from online.ml_user_history_detail where partition_date = {today_str} and last_active_date >= {last_30_day_str}) t2 (select device_id from online.ml_device_day_active_status where partition_date = '{today_str}' and active_type in (1,2)) t2 LEFT JOIN ( select distinct device_id from ml.ml_d_ct_dv_devicespam_d --去除机构刷单设备,即作弊设备(浏览和曝光事件去除) WHERE partition_day='{today_str}' union all select distinct device_id from dim.dim_device_user_staff --去除内网用户 )spam_pv on spam_pv.device_id=t2.device_id LEFT JOIN ( SELECT partition_date,device_id FROM (--找出user_id当天活跃的第一个设备id SELECT user_id,partition_date, if(size(device_list) > 0, device_list [ 0 ], '') AS device_id FROM online.ml_user_updates WHERE partition_date='{today_str}' )t1 JOIN ( --医生账号 SELECT distinct user_id FROM online.tl_hdfs_doctor_view WHERE partition_date = '{today_str}' --马甲账号/模特用户 UNION ALL SELECT user_id FROM ml.ml_c_ct_ui_user_dimen_d WHERE partition_day = '{today_str}' AND (is_puppet = 'true' or is_classifyuser = 'true') UNION ALL --公司内网覆盖用户 select distinct user_id from dim.dim_device_user_staff UNION ALL --登陆过医生设备 SELECT distinct t1.user_id FROM ( SELECT user_id, v.device_id as device_id FROM online.ml_user_history_detail LATERAL VIEW EXPLODE(device_history_list) v AS device_id WHERE partition_date = '{today_str}' ) t1 JOIN ( SELECT device_id FROM online.ml_device_history_detail WHERE partition_date = '{today_str}' AND is_login_doctor = '1' ) t2 ON t1.device_id = t2.device_id )t2 on t1.user_id=t2.user_id group by partition_date,device_id )dev on t2.device_id=dev.device_id WHERE spam_pv.device_id IS NULL and dev.device_id is null """.format(today_str='20200926', last_30_day_str='20200926') print(huidu_device_id_sql) huidu_device_id_df = spark.sql(huidu_device_id_sql) huidu_device_id_df.createOrReplaceTempView("dev_view") sql_search_ctr = r""" SELECT count(distinct (a.cl_id)) FROM (select device_id from dev_view) t1 left join ( SELECT cl_id, card_id, app_session_id, transaction_type from online.ml_community_precise_exposure_detail WHERE partition_date>= '${today_str}' AND action in ('page_precise_exposure','home_choiceness_card_exposure') --7745版本action改为page_precise_exposure AND is_exposure = '1' ----精准曝光 AND page_name ='home' AND tab_name = '精选' AND (transaction_type in ('-1','smr','hotspot','pgc','newdata','hotspot_feed','aistragegy','excestragegy','FIXEDSTRATEGY','FIXEDSTRATEGY_VIDEO','high_quality_fmctr') or transaction_type like '%ctr' or transaction_type like '%cvr' or transaction_type like 'deeplink%') AND card_content_type in ('user_post') group by cl_id, transaction_type, card_id, app_session_id )a on t1.device_id = a.cl_id """.format(today_str='20200926') print(sql_search_ctr) search_ctr_df = spark.sql(sql_search_ctr) # spam_pv_df.createOrReplaceTempView("dev_view") search_ctr_df.show(1) sql_res = search_ctr_df.collect() print("-------------------------------") for res in sql_res: print(res)