# -*- coding:UTF-8 -*- # @Time : 2020/8/21 16:43 # @File : search_strategy_d.py # @email : litao@igengmei.com # @author : litao import hashlib import json import pymysql import xlwt, datetime import redis # from pyhive import hive from maintenance.func_send_email_with_file import send_file_email from typing import Dict, List from elasticsearch_7 import Elasticsearch from elasticsearch_7.helpers import scan import sys import time from pyspark import SparkConf from pyspark.sql import SparkSession, DataFrame from pyspark.sql.functions import lit import pytispark.pytispark as pti db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy', db='jerry_prod') cursor = db.cursor() startTime = time.time() sparkConf = SparkConf() sparkConf.set("spark.sql.crossJoin.enabled", True) sparkConf.set("spark.debug.maxToStringFields", "100") sparkConf.set("spark.tispark.plan.allow_index_double_read", False) sparkConf.set("spark.tispark.plan.allow_index_read", True) sparkConf.set("spark.hive.mapred.supports.subdirectories", True) # sparkConf.set("spark.sql.adaptive.enabled", True) # sparkConf.set("spark.sql.adaptive.skewedJoin.enabled", True) sparkConf.set("spark.shuffle.statistics.verbose", True) # sparkConf.set("spark.sql.adaptive.shuffle.targetPostShuffleInputSize", "67108864") # sparkConf.set("spark.sql.adaptive.shuffle.targetPostShuffleRowCount", "20000000") sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True) sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") sparkConf.set("mapreduce.output.fileoutputformat.compress", False) sparkConf.set("mapreduce.map.output.compress", False) sparkConf.set("prod.gold.jdbcuri", "jdbc:mysql://172.16.30.136/doris_prod?user=doris&password=o5gbA27hXHHm&rewriteBatchedStatements=true") sparkConf.set("prod.mimas.jdbcuri", "jdbc:mysql://172.16.30.138/mimas_prod?user=mimas&password=GJL3UJe1Ck9ggL6aKnZCq4cRvM&rewriteBatchedStatements=true") sparkConf.set("prod.gaia.jdbcuri", "jdbc:mysql://172.16.30.143/zhengxing?user=work&password=BJQaT9VzDcuPBqkd&rewriteBatchedStatements=true") sparkConf.set("prod.tidb.jdbcuri", "jdbc:mysql://172.16.40.158:4000/eagle?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true") sparkConf.set("prod.jerry.jdbcuri", "jdbc:mysql://172.16.40.158:4000/jerry_prod?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true") sparkConf.set("prod.tispark.pd.addresses", "172.16.40.158:2379") sparkConf.set("prod.tispark.pd.addresses", "172.16.40.170:4000") sparkConf.set("prod.tidb.database", "jerry_prod") spark = (SparkSession.builder.config(conf=sparkConf).config("spark.sql.extensions", "org.apache.spark.sql.TiExtensions") .config("spark.tispark.pd.addresses", "172.16.40.170:2379").appName( "LR PYSPARK TEST").enableHiveSupport().getOrCreate()) spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/brickhouse-0.7.1-SNAPSHOT.jar") spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/hive-udf-1.0-SNAPSHOT.jar") spark.sql("CREATE TEMPORARY FUNCTION json_map AS 'brickhouse.udf.json.JsonMapUDF'") spark.sql("CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJsonFormatCheck'") spark.sql("CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'") task_list = [] task_days = 1 for t in range(0, task_days): day_num = 0 - t now = (datetime.datetime.now() + datetime.timedelta(days=day_num)) last_30_day_str = (now + datetime.timedelta(days=-30)).strftime("%Y%m%d") today_str = now.strftime("%Y%m%d") yesterday_str = (now + datetime.timedelta(days=-1)).strftime("%Y%m%d") one_week_age_str = (now + datetime.timedelta(days=-7)).strftime("%Y%m%d") sql_distinct_device_id = """ SELECT count(distinct user_id) FROM online.tl_hdfs_doctor_view_backup WHERE partition_date = '20200827'""" print(sql_distinct_device_id) distinct_device_id_df = spark.sql(sql_distinct_device_id,) distinct_device_id_df.show(1) sql_res = distinct_device_id_df.collect() for res in sql_res: print(res) print("-------------------------------") # sql = r"""SELECT # ,t3.device_os_type as device_type # ,t3.active_type as active_type # ,t3.channel as channel_type # ,NVL(t3.search_pv,0) as pv # ,NVL(t3.search_uv,0) as uv # FROM # ( # SELECT active_type,device_os_type,channel,search_pv,search_uv # FROM # ( # SELECT active_type,device_os_type,channel # ,count(t1.cl_id) as search_pv # ,count(distinct t1.cl_id) as search_uv # FROM # ( # SELECT partition_date # ,cl_id # FROM online.bl_hdfs_maidian_updates # WHERE partition_date >= {yesterday_str} # AND partition_date < {today_str} # AND action in ('do_search','search_result_click_search') # # UNION ALL # SELECT cl_id # FROM online.bl_hdfs_maidian_updates # WHERE partition_date >= {yesterday_str} # AND partition_date < {today_str} # AND action = 'on_click_card' # AND params['page_name']='search_home' # # UNION ALL # SELECT partition_date # ,cl_id # FROM online.bl_hdfs_maidian_updates # WHERE partition_date >= {yesterday_str} # AND partition_date < {today_str} # AND action = 'on_click_card' # AND params['in_page_pos']='猜你喜欢' # AND params['tab_name']='精选' # AND params['card_type']='search_word' # # # UNION ALL # SELECT partition_date # ,cl_id # FROM online.bl_hdfs_maidian_updates # WHERE partition_date >= {yesterday_str} # AND partition_date < {today_str} # AND action = 'on_click_card' # AND page_name='welfare_home' # AND params['card_type'] ='search_word' # AND params['in_page_pos']='大家都在搜' # # UNION ALL # SELECT partition_date # ,cl_id # FROM online.bl_hdfs_maidian_updates # WHERE partition_date >= {yesterday_str} # AND partition_date < {today_str} # AND int(split(app_version,'\\.')[1]) >= 27 # AND action='on_click_card' # AND params['card_type']='highlight_word' # )t1 # JOIN # ( # SELECT partition_date,device_id,t2.active_type,t2.channel,t2.device_os_type # FROM # ( # SELECT # partition_date,m.device_id # ,array(device_os_type ,'合计') as device_os_type # ,array(case WHEN active_type = '4' THEN '老活' # WHEN active_type in ('1','2') then '新增' END ,'合计') as active_type # ,array(CASE WHEN is_ai_channel = 'true' THEN 'AI' ELSE '其他' END , '合计') as channel # FROM online.ml_device_day_active_status m # LEFT JOIN # (SELECT code,is_ai_channel,partition_day # FROM DIM.DIM_AI_CHANNEL_ZP_NEW # WHERE partition_day>= {yesterday_str} # AND partition_day < {today_str}) tmp # ON m.partition_date=tmp.partition_day AND first_channel_source_type=code # WHERE partition_date >= {yesterday_str} # AND partition_date < {today_str} # AND active_type in ('1','2','4') # ) mas # LATERAL VIEW explode(mas.channel) t2 AS channel # LATERAL VIEW explode(mas.device_os_type) t2 AS device_os_type # LATERAL VIEW explode(mas.active_type) t2 AS active_type # )t2 # on t1.cl_id=t2.device_id AND t1.partition_date = t2.partition_date # GROUP BY active_type,device_os_type,channel # )t # )t3 # """.format(today_str=today_str, yesterday_str=yesterday_str, ) # device_df = spark.sql(sql) # device_df.show(1, False) # sql_res = device_df.collect() # for res in sql_res: # print(res) # device_df.createOrReplaceTempView("data_table") # collects_sql = """ # SELECT device_type,active_type,channel_type,ROUND(if(NVL(sum(uv),0) <> 0 ,NVL(sum(search_core_pv),0)/NVL(sum(uv),0) ,0),5) as core_pv_division_uv, # ROUND(if(NVL(sum(uv),0) <> 0 ,NVL(sum(search_pv),0)/NVL(sum(uv),0) , 0),5) as pv_division_uv # FROM data_table GROUP BY device_type,active_type,channel_type # """ # finnal_df = spark.sql(collects_sql) # # finnal_df.show(1, False) # sql_res = finnal_df.collect() # for res in sql_res: # # print(res) # device_type = res.device_type # active_type = res.active_type # channel_type = res.channel_type # core_pv_division_uv = res.core_pv_division_uv # pv_division_uv = res.pv_division_uv # pid = hashlib.md5( # (today_str + device_type + active_type + channel_type).encode("utf8")).hexdigest() # instert_sql = """replace into search_strategy_d( # day_id,device_type,active_type,channel_type,core_pv_division_uv,pv_division_uv,pid # ) VALUES('{day_id}','{device_type}','{active_type}','{channel_type}',{core_pv_division_uv},{pv_division_uv},'{pid}');""".format( # day_id=today_str, device_type=device_type, # active_type=active_type, channel_type=channel_type, core_pv_division_uv=core_pv_division_uv,pv_division_uv=pv_division_uv,pid=pid # # ) # print(instert_sql) # # cursor.execute("set names 'UTF8'") # res = cursor.execute(instert_sql) # db.commit() # print(res) # db.close()