Commit 248092b2 authored by 赵威's avatar 赵威

remove tractate device info

parent ad75bb56
...@@ -295,13 +295,13 @@ CATEGORICAL_COLUMNS = [ ...@@ -295,13 +295,13 @@ CATEGORICAL_COLUMNS = [
# "device_fp2", # "device_fp2",
# "device_sp2", # "device_sp2",
# "device_p2", # "device_p2",
"device_fd3", # "device_fd3",
"device_sd3", # "device_sd3",
"device_fs3", # "device_fs3",
"device_ss3", # "device_ss3",
"device_fp3", # "device_fp3",
"device_sp3", # "device_sp3",
"device_p3", # "device_p3",
] ]
CROSS_COLUMNS = [ CROSS_COLUMNS = [
["device_fd", "content_fd"], ["device_fd", "content_fd"],
...@@ -442,13 +442,13 @@ def join_features(device_df, tractate_df, cc_df): ...@@ -442,13 +442,13 @@ def join_features(device_df, tractate_df, cc_df):
# df["device_sp2"] = df["second_positions_x"].apply(lambda x: nth_element(x, 1)) # df["device_sp2"] = df["second_positions_x"].apply(lambda x: nth_element(x, 1))
# df["device_p2"] = df["projects_x"].apply(lambda x: nth_element(x, 1)) # df["device_p2"] = df["projects_x"].apply(lambda x: nth_element(x, 1))
df["device_fd3"] = df["first_demands_x"].apply(lambda x: nth_element(x, 2)) # df["device_fd3"] = df["first_demands_x"].apply(lambda x: nth_element(x, 2))
df["device_sd3"] = df["second_demands_x"].apply(lambda x: nth_element(x, 2)) # df["device_sd3"] = df["second_demands_x"].apply(lambda x: nth_element(x, 2))
df["device_fs3"] = df["first_solutions_x"].apply(lambda x: nth_element(x, 2)) # df["device_fs3"] = df["first_solutions_x"].apply(lambda x: nth_element(x, 2))
df["device_ss3"] = df["second_solutions_x"].apply(lambda x: nth_element(x, 2)) # df["device_ss3"] = df["second_solutions_x"].apply(lambda x: nth_element(x, 2))
df["device_fp3"] = df["first_positions_x"].apply(lambda x: nth_element(x, 2)) # df["device_fp3"] = df["first_positions_x"].apply(lambda x: nth_element(x, 2))
df["device_sp3"] = df["second_positions_x"].apply(lambda x: nth_element(x, 2)) # df["device_sp3"] = df["second_positions_x"].apply(lambda x: nth_element(x, 2))
df["device_p3"] = df["projects_x"].apply(lambda x: nth_element(x, 2)) # df["device_p3"] = df["projects_x"].apply(lambda x: nth_element(x, 2))
df["content_fd"] = df["first_demands_y"].apply(lambda x: nth_element(x, 0)) df["content_fd"] = df["first_demands_y"].apply(lambda x: nth_element(x, 0))
df["content_sd"] = df["second_demands_y"].apply(lambda x: nth_element(x, 0)) df["content_sd"] = df["second_demands_y"].apply(lambda x: nth_element(x, 0))
...@@ -545,13 +545,13 @@ def device_tractate_fe(device_id, tractate_ids, device_dict, tractate_dict): ...@@ -545,13 +545,13 @@ def device_tractate_fe(device_id, tractate_ids, device_dict, tractate_dict):
# device_info["device_fp2"] = nth_element(device_fp, 1) # device_info["device_fp2"] = nth_element(device_fp, 1)
# device_info["device_sp2"] = nth_element(device_sp, 1) # device_info["device_sp2"] = nth_element(device_sp, 1)
# device_info["device_p2"] = nth_element(device_p, 1) # device_info["device_p2"] = nth_element(device_p, 1)
device_info["device_fd3"] = nth_element(device_fd, 2) # device_info["device_fd3"] = nth_element(device_fd, 2)
device_info["device_sd3"] = nth_element(device_sd, 2) # device_info["device_sd3"] = nth_element(device_sd, 2)
device_info["device_fs3"] = nth_element(device_fs, 2) # device_info["device_fs3"] = nth_element(device_fs, 2)
device_info["device_ss3"] = nth_element(device_ss, 2) # device_info["device_ss3"] = nth_element(device_ss, 2)
device_info["device_fp3"] = nth_element(device_fp, 2) # device_info["device_fp3"] = nth_element(device_fp, 2)
device_info["device_sp3"] = nth_element(device_sp, 2) # device_info["device_sp3"] = nth_element(device_sp, 2)
device_info["device_p3"] = nth_element(device_p, 2) # device_info["device_p3"] = nth_element(device_p, 2)
tractate_lst = [] tractate_lst = []
tractate_ids_res = [] tractate_ids_res = []
for id in tractate_ids: for id in tractate_ids:
......
...@@ -174,13 +174,13 @@ _categorical_columns = [ ...@@ -174,13 +174,13 @@ _categorical_columns = [
# "device_fp2", # "device_fp2",
# "device_sp2", # "device_sp2",
# "device_p2", # "device_p2",
"device_fd3", # "device_fd3",
"device_sd3", # "device_sd3",
"device_fs3", # "device_fs3",
"device_ss3", # "device_ss3",
"device_fp3", # "device_fp3",
"device_sp3", # "device_sp3",
"device_p3", # "device_p3",
] ]
PREDICTION_ALL_COLUMNS = _int_columns + _float_columns + _categorical_columns PREDICTION_ALL_COLUMNS = _int_columns + _float_columns + _categorical_columns
......
...@@ -62,8 +62,7 @@ def main(): ...@@ -62,8 +62,7 @@ def main():
estimator_config = tf.estimator.RunConfig(session_config=session_config) estimator_config = tf.estimator.RunConfig(session_config=session_config)
model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config) model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config)
# TODO 50000 train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=50000)
train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=15000)
eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False)) eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False))
res = tf.estimator.train_and_evaluate(model, train_spec, eval_spec) res = tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@") print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
...@@ -78,9 +77,8 @@ def main(): ...@@ -78,9 +77,8 @@ def main():
model_export_path = str(Path("/data/files/models/tractate/").expanduser()) model_export_path = str(Path("/data/files/models/tractate/").expanduser())
save_path = model_export(model, all_features, model_export_path) save_path = model_export(model, all_features, model_export_path)
print("save to: " + save_path) print("save to: " + save_path)
# TODO save model set_essm_model_save_path("tractate", save_path)
# set_essm_model_save_path("tractate", save_path) record_esmm_auc_to_db("tractate", ctr_auc, ctcvr_auc, total_time, save_path)
# record_esmm_auc_to_db("tractate", ctr_auc, ctcvr_auc, total_time, save_path)
print("============================================================") print("============================================================")
# save_path = get_essm_model_save_path("tractate") # save_path = get_essm_model_save_path("tractate")
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment