Commit 37ebeeda authored by 赵威's avatar 赵威

update columns

parent ef92df4d
......@@ -9,9 +9,9 @@ TRACTATE_COLUMNS = [
"first_demands", "second_demands", "first_solutions", "second_solutions", "first_positions", "second_positions", "projects"
]
_int_columns = ["active_days", "reply_num", "reply_pure_num"]
_float_columns = ["one_ctr", "three_ctr", "seven_ctr", "fifteen_ctr", "thirty_ctr", "sixty_ctr", "ninety_ctr", "history_ctr"]
_categorical_columns = [
INT_COLUMNS = ["active_days", "reply_num", "reply_pure_num"]
FLOAT_COLUMNS = ["one_ctr", "three_ctr", "seven_ctr", "fifteen_ctr", "thirty_ctr", "sixty_ctr", "ninety_ctr", "history_ctr"]
CATEGORICAL_COLUMNS = [
"device_id", "active_type", "past_consume_ability_history", "potential_consume_ability_history", "price_sensitive_history",
"card_id", "is_pure_author", "is_have_reply", "is_have_pure_reply", "content_level", "show_tag_id", "device_fd", "content_fd",
"fd1", "fd2", "fd3", "device_sd", "content_sd", "sd1", "sd2", "sd3", "device_fs", "content_fs", "fs1", "fs2", "fs3",
......
......@@ -10,10 +10,7 @@ import tensorflow as tf
from sklearn.model_selection import train_test_split
from models.esmm.diary_model import model_predict_diary
from models.esmm.fe import click_fe as click_fe
from models.esmm.fe import device_fe as device_fe
from models.esmm.fe import diary_fe as diary_fe
from models.esmm.fe import fe as fe
from models.esmm.fe import click_fe, device_fe, diary_fe, fe
from models.esmm.input_fn import esmm_input_fn
from models.esmm.model import esmm_model_fn, model_export
......
......@@ -7,7 +7,7 @@ from pathlib import Path
import tensorflow as tf
from sklearn.model_selection import train_test_split
from models.esmm.fe import click_fe, device_fe, tractate_fe
from models.esmm.fe import click_fe, device_fe, fe, tractate_fe
from models.esmm.input_fn import esmm_input_fn
......@@ -32,7 +32,7 @@ def main():
train_df, test_df = train_test_split(df, test_size=0.2)
train_df, val_df = train_test_split(train_df, test_size=0.2)
all_features = tractate_fe.build_features(df)
all_features = fe.build_features(df, tractate_fe.INT_COLUMNS, tractate_fe.FLOAT_COLUMNS, tractate_fe.CATEGORICAL_COLUMNS)
params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
model_path = str(Path("~/data/model_tmp/").expanduser())
# if os.path.exists(model_path):
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment