Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
G
gm_strategy_cvr
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
gm_strategy_cvr
Commits
40c420da
Commit
40c420da
authored
Jul 30, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update model path
parent
56df5503
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
192 additions
and
60 deletions
+192
-60
main_portrait.py
src/main_portrait.py
+1
-1
diary_fe.py
src/models/esmm/fe/diary_fe.py
+46
-3
tractate_fe.py
src/models/esmm/fe/tractate_fe.py
+116
-4
input_fn.py
src/models/esmm/input_fn.py
+0
-43
train_diary.py
src/train_diary.py
+5
-4
train_tractate.py
src/train_tractate.py
+24
-5
No files found.
src/main_portrait.py
View file @
40c420da
...
...
@@ -61,7 +61,7 @@ def main():
diary_dict
=
diary_fe
.
get_diary_dict_from_redis
()
print
(
"redis data: "
+
str
(
len
(
device_dict
))
+
" "
+
str
(
len
(
diary_dict
)))
save_path
=
"/home/gmuser/data/models/15960
18742
"
save_path
=
"/home/gmuser/data/models/15960
77883
"
predict_fn
=
tf
.
contrib
.
predictor
.
from_saved_model
(
save_path
)
# device_id = "androidid_a25a1129c0b38f7b"
...
...
src/models/esmm/fe/diary_fe.py
View file @
40c420da
import
timeit
import
pandas
as
pd
from
tensorflow
import
feature_column
as
fc
from
utils.cache
import
redis_db_client
from
..utils
import
common_elements
,
nth_element
from
..utils
import
(
common_elements
,
create_boundaries
,
create_vocabulary_list
,
nth_element
)
DIARY_COLUMNS
=
[
"card_id"
,
"is_pure_author"
,
"is_have_reply"
,
"is_have_pure_reply"
,
"content_level"
,
"topic_num"
,
"favor_num"
,
"vote_num"
,
...
...
@@ -73,11 +73,13 @@ def diary_feature_engineering(df):
diary_df
[
"is_have_pure_reply"
]
=
diary_df
[
"is_have_pure_reply"
]
.
astype
(
int
)
diary_df
[
"is_have_reply"
]
=
diary_df
[
"is_have_reply"
]
.
astype
(
int
)
diary_df
=
diary_df
[
DIARY_COLUMNS
]
print
(
"diary:"
)
nullseries
=
diary_df
.
isnull
()
.
sum
()
print
(
nullseries
[
nullseries
>
0
])
print
(
diary_df
.
shape
)
return
diary_df
[
DIARY_COLUMNS
]
return
diary_df
def
join_features
(
device_df
,
diary_df
,
cc_df
):
...
...
@@ -148,6 +150,47 @@ def join_features(device_df, diary_df, cc_df):
return
df
def
build_features
(
df
):
# TODO
int_columns
=
[
"active_days"
,
"topic_num"
,
"favor_num"
,
"vote_num"
]
float_columns
=
[
"one_ctr"
,
"three_ctr"
,
"seven_ctr"
,
"fifteen_ctr"
]
numeric_features
=
[]
for
col
in
(
int_columns
+
float_columns
):
if
col
in
int_columns
:
numeric_features
.
append
(
fc
.
bucketized_column
(
fc
.
numeric_column
(
col
,
dtype
=
tf
.
int64
),
boundaries
=
create_boundaries
(
df
,
col
)))
else
:
numeric_features
.
append
(
fc
.
bucketized_column
(
fc
.
numeric_column
(
col
),
boundaries
=
create_boundaries
(
df
,
col
)))
# TODO
categorical_columns
=
[
"device_id"
,
"active_type"
,
"past_consume_ability_history"
,
"potential_consume_ability_history"
,
"price_sensitive_history"
,
"card_id"
,
"is_pure_author"
,
"is_have_reply"
,
"is_have_pure_reply"
,
"content_level"
,
"device_fd"
,
"content_fd"
,
"fd1"
,
"fd2"
,
"fd3"
,
"device_sd"
,
"content_sd"
,
"sd1"
,
"sd2"
,
"sd3"
,
"device_fs"
,
"content_fs"
,
"fs1"
,
"fs2"
,
"fs3"
,
"device_ss"
,
"content_ss"
,
"ss1"
,
"ss2"
,
"ss3"
,
"device_fp"
,
"content_fp"
,
"fp1"
,
"fp2"
,
"fp3"
,
"device_sp"
,
"content_sp"
,
"sp1"
,
"sp2"
,
"sp3"
,
"device_p"
,
"content_p"
,
"p1"
,
"p2"
,
"p3"
]
categorical_ignore_columns
=
[]
categorical_features
=
[]
for
col
in
categorical_columns
:
if
col
not
in
categorical_ignore_columns
:
if
col
==
"card_id"
:
categorical_features
.
append
(
fc
.
embedding_column
(
fc
.
categorical_column_with_hash_bucket
(
col
,
20000
,
dtype
=
tf
.
int64
),
dimension
=
int
(
df
[
col
]
.
size
**
0.25
)))
elif
col
==
"device_id"
:
categorical_features
.
append
(
fc
.
embedding_column
(
fc
.
categorical_column_with_hash_bucket
(
col
,
200000
),
dimension
=
int
(
df
[
col
]
.
size
**
0.25
)))
else
:
categorical_features
.
append
(
fc
.
indicator_column
(
fc
.
categorical_column_with_vocabulary_list
(
col
,
create_vocabulary_list
(
df
,
col
))))
all_features
=
(
numeric_features
+
categorical_features
)
return
all_features
def
device_diary_fe
(
device_id
,
diary_ids
,
device_dict
,
diary_dict
):
time_1
=
timeit
.
default_timer
()
device_info
=
device_dict
.
get
(
device_id
,
{})
.
copy
()
...
...
src/models/esmm/fe/tractate_fe.py
View file @
40c420da
import
pandas
as
pd
from
tensorflow
import
feature_column
as
fc
from
utils.cache
import
redis_db_client
from
..utils
import
(
common_elements
,
create_boundaries
,
create_vocabulary_list
,
nth_element
)
TRACTATE_COLUMNS
=
[
"card_id"
,
"is_pure_author"
,
"is_have_pure_reply"
,
"is_have_reply"
,
"content_level"
,
"show_tag_id"
,
"reply_num"
,
...
...
@@ -11,12 +15,13 @@ def read_csv_data(dataset_path):
tractate_df
=
pd
.
read_csv
(
dataset_path
.
joinpath
(
"tractate.csv"
),
sep
=
"|"
)
click_df
=
pd
.
read_csv
(
dataset_path
.
joinpath
(
"tractate_click.csv"
),
sep
=
"|"
)
conversion_df
=
pd
.
read_csv
(
dataset_path
.
joinpath
(
"tractate_click_cvr.csv"
),
sep
=
"|"
)
return
tractate_df
,
click_df
,
conversion_df
# TODO
return
tractate_df
.
sample
(
5000
),
click_df
.
sample
(
10000
),
conversion_df
def
get_tractate_from_redis
():
"""
return: {
diary
_id: {first_demands: [], is_pure_author: 1}}
return: {
tractate
_id: {first_demands: [], is_pure_author: 1}}
"""
pass
...
...
@@ -44,15 +49,122 @@ def tractate_feature_engineering(tractate_df):
df
[
"is_have_pure_reply"
]
=
df
[
"is_have_pure_reply"
]
.
astype
(
int
)
df
[
"is_have_reply"
]
=
df
[
"is_have_reply"
]
.
astype
(
int
)
df
=
df
[
TRACTATE_COLUMNS
]
print
(
"tractate:"
)
nullseries
=
df
.
isnull
()
.
sum
()
print
(
nullseries
[
nullseries
>
0
])
print
(
df
.
shape
)
return
df
[
TRACTATE_COLUMNS
]
return
df
def
join_features
(
device_df
,
tractate_df
,
cc_df
):
pass
a
=
pd
.
merge
(
device_df
,
cc_df
,
how
=
"inner"
,
left_on
=
"device_id"
,
right_on
=
"cl_id"
)
df
=
pd
.
merge
(
a
,
tractate_df
,
how
=
"inner"
,
left_on
=
"card_id"
,
right_on
=
"card_id"
)
df
[
"first_demands"
]
=
df
[[
"first_demands_x"
,
"first_demands_y"
]]
.
apply
(
lambda
x
:
common_elements
(
*
x
),
axis
=
1
)
df
[
"second_demands"
]
=
df
[[
"second_demands_x"
,
"second_demands_y"
]]
.
apply
(
lambda
x
:
common_elements
(
*
x
),
axis
=
1
)
df
[
"first_solutions"
]
=
df
[[
"first_solutions_x"
,
"first_solutions_y"
]]
.
apply
(
lambda
x
:
common_elements
(
*
x
),
axis
=
1
)
df
[
"second_solutions"
]
=
df
[[
"second_solutions_x"
,
"second_solutions_y"
]]
.
apply
(
lambda
x
:
common_elements
(
*
x
),
axis
=
1
)
df
[
"first_positions"
]
=
df
[[
"first_positions_x"
,
"second_positions_y"
]]
.
apply
(
lambda
x
:
common_elements
(
*
x
),
axis
=
1
)
df
[
"second_positions"
]
=
df
[[
"second_positions_x"
,
"second_positions_y"
]]
.
apply
(
lambda
x
:
common_elements
(
*
x
),
axis
=
1
)
df
[
"projects"
]
=
df
[[
"projects_x"
,
"projects_y"
]]
.
apply
(
lambda
x
:
common_elements
(
*
x
),
axis
=
1
)
df
[
"device_fd"
]
=
df
[
"first_demands_x"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"device_sd"
]
=
df
[
"second_demands_x"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"device_fs"
]
=
df
[
"first_solutions_x"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"device_ss"
]
=
df
[
"second_solutions_x"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"device_fp"
]
=
df
[
"first_positions_x"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"device_sp"
]
=
df
[
"second_positions_x"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"device_p"
]
=
df
[
"projects_x"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"content_fd"
]
=
df
[
"first_demands_y"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"content_sd"
]
=
df
[
"second_demands_y"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"content_fs"
]
=
df
[
"first_solutions_y"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"content_ss"
]
=
df
[
"second_solutions_y"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"content_fp"
]
=
df
[
"first_positions_y"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"content_sp"
]
=
df
[
"second_positions_y"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"content_p"
]
=
df
[
"projects_y"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"fd1"
]
=
df
[
"first_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"fd2"
]
=
df
[
"first_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
df
[
"fd3"
]
=
df
[
"first_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
2
))
df
[
"sd1"
]
=
df
[
"second_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"sd2"
]
=
df
[
"second_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
df
[
"sd3"
]
=
df
[
"second_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
2
))
df
[
"fs1"
]
=
df
[
"first_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"fs2"
]
=
df
[
"first_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
df
[
"fs3"
]
=
df
[
"first_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
2
))
df
[
"ss1"
]
=
df
[
"second_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"ss2"
]
=
df
[
"second_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
df
[
"ss3"
]
=
df
[
"second_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
2
))
df
[
"fp1"
]
=
df
[
"first_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"fp2"
]
=
df
[
"first_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
df
[
"fp3"
]
=
df
[
"first_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
2
))
df
[
"sp1"
]
=
df
[
"second_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"sp2"
]
=
df
[
"second_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
df
[
"sp3"
]
=
df
[
"second_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
2
))
df
[
"p1"
]
=
df
[
"projects"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"p2"
]
=
df
[
"projects"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
df
[
"p3"
]
=
df
[
"projects"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
2
))
print
(
"df:"
)
nullseries
=
df
.
isnull
()
.
sum
()
print
(
nullseries
[
nullseries
>
0
])
print
(
df
.
shape
)
drop_columns
=
[
"cl_id"
,
"first_demands_x"
,
"first_demands_y"
,
"first_demands"
,
"second_demands_x"
,
"second_demands_y"
,
"second_demands"
,
"first_solutions_x"
,
"first_solutions_y"
,
"first_solutions"
,
"second_solutions_x"
,
"second_solutions_y"
,
"second_solutions"
,
"first_positions_x"
,
"first_positions_y"
,
"first_positions"
,
"second_positions_x"
,
"second_positions_y"
,
"second_positions"
,
"projects_x"
,
"projects_y"
,
"projects"
]
# for col in drop_columns:
# if col in df.columns:
# df.drop(col, inplace=True, axis=1)
df
.
drop
(
drop_columns
,
inplace
=
True
,
axis
=
1
)
return
df
def
build_features
(
df
):
# TODO
int_columns
=
[
"active_days"
,
"topic_num"
,
"favor_num"
,
"vote_num"
]
float_columns
=
[
"one_ctr"
,
"three_ctr"
,
"seven_ctr"
,
"fifteen_ctr"
]
numeric_features
=
[]
for
col
in
(
int_columns
+
float_columns
):
if
col
in
int_columns
:
numeric_features
.
append
(
fc
.
bucketized_column
(
fc
.
numeric_column
(
col
,
dtype
=
tf
.
int64
),
boundaries
=
create_boundaries
(
df
,
col
)))
else
:
numeric_features
.
append
(
fc
.
bucketized_column
(
fc
.
numeric_column
(
col
),
boundaries
=
create_boundaries
(
df
,
col
)))
# TODO
categorical_columns
=
[
"device_id"
,
"active_type"
,
"past_consume_ability_history"
,
"potential_consume_ability_history"
,
"price_sensitive_history"
,
"card_id"
,
"is_pure_author"
,
"is_have_reply"
,
"is_have_pure_reply"
,
"content_level"
,
"device_fd"
,
"content_fd"
,
"fd1"
,
"fd2"
,
"fd3"
,
"device_sd"
,
"content_sd"
,
"sd1"
,
"sd2"
,
"sd3"
,
"device_fs"
,
"content_fs"
,
"fs1"
,
"fs2"
,
"fs3"
,
"device_ss"
,
"content_ss"
,
"ss1"
,
"ss2"
,
"ss3"
,
"device_fp"
,
"content_fp"
,
"fp1"
,
"fp2"
,
"fp3"
,
"device_sp"
,
"content_sp"
,
"sp1"
,
"sp2"
,
"sp3"
,
"device_p"
,
"content_p"
,
"p1"
,
"p2"
,
"p3"
]
categorical_ignore_columns
=
[]
categorical_features
=
[]
for
col
in
categorical_columns
:
if
col
not
in
categorical_ignore_columns
:
if
col
==
"card_id"
:
categorical_features
.
append
(
fc
.
embedding_column
(
fc
.
categorical_column_with_hash_bucket
(
col
,
20000
,
dtype
=
tf
.
int64
),
dimension
=
int
(
df
[
col
]
.
size
**
0.25
)))
elif
col
==
"device_id"
:
categorical_features
.
append
(
fc
.
embedding_column
(
fc
.
categorical_column_with_hash_bucket
(
col
,
200000
),
dimension
=
int
(
df
[
col
]
.
size
**
0.25
)))
else
:
categorical_features
.
append
(
fc
.
indicator_column
(
fc
.
categorical_column_with_vocabulary_list
(
col
,
create_vocabulary_list
(
df
,
col
))))
all_features
=
(
numeric_features
+
categorical_features
)
return
all_features
def
device_tractate_fe
(
device_id
,
tractate_ids
,
device_dict
,
tractate_dict
):
...
...
src/models/esmm/input_fn.py
View file @
40c420da
import
tensorflow
as
tf
from
tensorflow
import
feature_column
as
fc
from
.utils
import
create_boundaries
,
create_vocabulary_list
def
build_features
(
df
):
# TODO
int_columns
=
[
"active_days"
,
"topic_num"
,
"favor_num"
,
"vote_num"
]
float_columns
=
[
"one_ctr"
,
"three_ctr"
,
"seven_ctr"
,
"fifteen_ctr"
]
numeric_features
=
[]
for
col
in
(
int_columns
+
float_columns
):
if
col
in
int_columns
:
numeric_features
.
append
(
fc
.
bucketized_column
(
fc
.
numeric_column
(
col
,
dtype
=
tf
.
int64
),
boundaries
=
create_boundaries
(
df
,
col
)))
else
:
numeric_features
.
append
(
fc
.
bucketized_column
(
fc
.
numeric_column
(
col
),
boundaries
=
create_boundaries
(
df
,
col
)))
# TODO
categorical_columns
=
[
"device_id"
,
"active_type"
,
"past_consume_ability_history"
,
"potential_consume_ability_history"
,
"price_sensitive_history"
,
"card_id"
,
"is_pure_author"
,
"is_have_reply"
,
"is_have_pure_reply"
,
"content_level"
,
"device_fd"
,
"content_fd"
,
"fd1"
,
"fd2"
,
"fd3"
,
"device_sd"
,
"content_sd"
,
"sd1"
,
"sd2"
,
"sd3"
,
"device_fs"
,
"content_fs"
,
"fs1"
,
"fs2"
,
"fs3"
,
"device_ss"
,
"content_ss"
,
"ss1"
,
"ss2"
,
"ss3"
,
"device_fp"
,
"content_fp"
,
"fp1"
,
"fp2"
,
"fp3"
,
"device_sp"
,
"content_sp"
,
"sp1"
,
"sp2"
,
"sp3"
,
"device_p"
,
"content_p"
,
"p1"
,
"p2"
,
"p3"
]
categorical_ignore_columns
=
[]
categorical_features
=
[]
for
col
in
categorical_columns
:
if
col
not
in
categorical_ignore_columns
:
if
col
==
"card_id"
:
categorical_features
.
append
(
fc
.
embedding_column
(
fc
.
categorical_column_with_hash_bucket
(
col
,
20000
,
dtype
=
tf
.
int64
),
dimension
=
int
(
df
[
col
]
.
size
**
0.25
)))
elif
col
==
"device_id"
:
categorical_features
.
append
(
fc
.
embedding_column
(
fc
.
categorical_column_with_hash_bucket
(
col
,
200000
),
dimension
=
int
(
df
[
col
]
.
size
**
0.25
)))
else
:
categorical_features
.
append
(
fc
.
indicator_column
(
fc
.
categorical_column_with_vocabulary_list
(
col
,
create_vocabulary_list
(
df
,
col
))))
all_features
=
(
numeric_features
+
categorical_features
)
return
all_features
def
esmm_input_fn
(
dataframe
,
shuffle
=
False
,
batch_size
=
256
):
...
...
src/train_diary.py
View file @
40c420da
...
...
@@ -13,7 +13,7 @@ from models.esmm.fe import device_fe as device_fe
from
models.esmm.fe
import
diary_fe
as
diary_fe
from
models.esmm.fe
import
click_fe
as
click_fe
from
models.esmm.diary_model
import
model_predict_diary
from
models.esmm.input_fn
import
build_features
,
esmm_input_fn
from
models.esmm.input_fn
import
esmm_input_fn
from
models.esmm.model
import
esmm_model_fn
,
model_export
...
...
@@ -27,12 +27,13 @@ def main():
# data_path = Path("~/data/cvr_data").expanduser() # local
data_path
=
Path
(
"/srv/apps/node2vec_git/cvr_data/"
)
# server
diary_df
,
diary_click_df
,
diary_conversion_df
=
diary_fe
.
read_csv_data
(
data_path
)
# print(diary_df.sample(1))
diary_df
=
diary_fe
.
diary_feature_engineering
(
diary_df
)
# print(diary_df.sample(1))
device_df
=
device_fe
.
read_csv_data
(
data_path
)
# print(diary_df.sample(1))
device_df
=
device_fe
.
device_feature_engineering
(
device_df
)
# print(device_df.sample(1))
diary_df
=
diary_fe
.
diary_feature_engineering
(
diary_df
)
# print(diary_df.sample(1))
cc_df
=
click_fe
.
click_feature_engineering
(
diary_click_df
,
diary_conversion_df
)
# print(cc_df.sample(1))
df
=
diary_fe
.
join_features
(
device_df
,
diary_df
,
cc_df
)
...
...
@@ -42,7 +43,7 @@ def main():
train_df
,
test_df
=
train_test_split
(
df
,
test_size
=
0.2
)
train_df
,
val_df
=
train_test_split
(
train_df
,
test_size
=
0.2
)
all_features
=
build_features
(
df
)
all_features
=
diary_fe
.
build_features
(
df
)
params
=
{
"feature_columns"
:
all_features
,
"hidden_units"
:
[
64
,
32
],
"learning_rate"
:
0.1
}
model_path
=
str
(
Path
(
"~/data/model_tmp/"
)
.
expanduser
())
# if os.path.exists(model_path):
...
...
src/train_tractate.py
View file @
40c420da
import
datetime
import
os
import
shutil
import
time
from
datetime
import
datetime
from
pathlib
import
Path
import
tensorflow
as
tf
from
sklearn.model_selection
import
train_test_split
from
models.esmm.fe
import
device_fe
as
device_fe
from
models.esmm.fe
import
tractate_fe
as
tractate_fe
from
models.esmm.fe
import
click_fe
as
click_fe
from
models.esmm.fe
import
click_fe
,
device_fe
,
tractate_fe
from
models.esmm.input_fn
import
esmm_input_fn
def
main
():
time_begin
=
time
.
time
()
tf
.
compat
.
v1
.
logging
.
set_verbosity
(
tf
.
compat
.
v1
.
logging
.
INFO
)
data_path
=
Path
(
"~/data/cvr_data"
)
.
expanduser
()
# local
# data_path = Path("/srv/apps/node2vec_git/cvr_data/") # server
tractate_df
,
tractate_click_df
,
tractate_conversion_df
=
tractate_fe
.
read_csv_data
(
data_path
)
tractate_df
=
tractate_fe
.
tractate_feature_engineering
(
tractate_df
)
device_df
=
device_fe
.
read_csv_data
(
data_path
)
device_df
=
device_fe
.
device_feature_engineering
(
device_df
)
cc_df
=
click_fe
.
click_feature_engineering
(
tractate_click_df
,
tractate_conversion_df
)
df
=
tractate_fe
.
join_features
(
device_df
,
tractate_df
,
cc_df
)
# print(df.dtypes)
train_df
,
test_df
=
train_test_split
(
df
,
test_size
=
0.2
)
train_df
,
val_df
=
train_test_split
(
train_df
,
test_size
=
0.2
)
all_features
=
tractate_fe
.
build_features
(
df
)
params
=
{
"feature_columns"
:
all_features
,
"hidden_units"
:
[
64
,
32
],
"learning_rate"
:
0.1
}
model_path
=
str
(
Path
(
"~/data/model_tmp/"
)
.
expanduser
())
# if os.path.exists(model_path):
# shutil.rmtree(model_path)
total_time
=
(
time
.
time
()
-
time_begin
)
/
60
print
(
"total cost {:.2f} mins at {}"
.
format
(
total_time
,
datetime
.
now
()))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment