Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
G
gm_strategy_cvr
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
gm_strategy_cvr
Commits
78361361
Commit
78361361
authored
Jul 30, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
diary prediction
parent
2801c03a
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
68 additions
and
64 deletions
+68
-64
diary_model.py
src/models/esmm/diary_model.py
+18
-15
train_diary.py
src/train_diary.py
+47
-46
train_tractate.py
src/train_tractate.py
+3
-3
No files found.
src/models/esmm/diary_model.py
View file @
78361361
...
...
@@ -5,35 +5,38 @@ import tensorflow as tf
from
.fe.diary_fe
import
device_diary_fe
from
.model
import
_bytes_feature
,
_float_feature
,
_int64_feature
_int_columns
=
[
"active_type"
,
"active_days"
,
"card_id"
,
"is_pure_author"
,
"is_have_reply"
,
"is_have_pure_reply"
,
"content_level"
,
"topic_num"
,
"favor_num"
,
"vote_num"
]
_float_columns
=
[
"one_ctr"
,
"three_ctr"
,
"seven_ctr"
,
"fifteen_ctr"
]
_categorical_columns
=
[
"device_id"
,
"past_consume_ability_history"
,
"potential_consume_ability_history"
,
"price_sensitive_history"
,
"device_fd"
,
"device_sd"
,
"device_fs"
,
"device_ss"
,
"device_fp"
,
"device_sp"
,
"device_p"
,
"content_fd"
,
"content_sd"
,
"content_fs"
,
"content_ss"
,
"content_fp"
,
"content_sp"
,
"content_p"
,
"fd1"
,
"fd2"
,
"fd3"
,
"sd1"
,
"sd2"
,
"sd3"
,
"fs1"
,
"fs2"
,
"fs3"
,
"ss1"
,
"ss2"
,
"ss3"
,
"fp1"
,
"fp2"
,
"fp3"
,
"sp1"
,
"sp2"
,
"sp3"
,
"p1"
,
"p2"
,
"p3"
]
PREDICTION_ALL_COLUMNS
=
_int_columns
+
_float_columns
+
_categorical_columns
def
model_predict_diary
(
device_id
,
diary_ids
,
device_dict
,
diary_dict
,
predict_fn
):
try
:
time_1
=
timeit
.
default_timer
()
device_info
,
diary_lst
,
diary_ids_res
=
device_diary_fe
(
device_id
,
diary_ids
,
device_dict
,
diary_dict
)
print
(
"predict check: "
+
str
(
len
(
diary_lst
))
+
" "
+
str
(
len
(
diary_ids_res
)))
# TODO
int_columns
=
[
"active_type"
,
"active_days"
,
"card_id"
,
"is_pure_author"
,
"is_have_reply"
,
"is_have_pure_reply"
,
"content_level"
,
"topic_num"
,
"favor_num"
,
"vote_num"
]
float_columns
=
[
"one_ctr"
,
"three_ctr"
,
"seven_ctr"
,
"fifteen_ctr"
]
str_columns
=
[
"device_id"
,
"past_consume_ability_history"
,
"potential_consume_ability_history"
,
"price_sensitive_history"
,
"device_fd"
,
"device_sd"
,
"device_fs"
,
"device_ss"
,
"device_fp"
,
"device_sp"
,
"device_p"
,
"content_fd"
,
"content_sd"
,
"content_fs"
,
"content_ss"
,
"content_fp"
,
"content_sp"
,
"content_p"
,
"fd1"
,
"fd2"
,
"fd3"
,
"sd1"
,
"sd2"
,
"sd3"
,
"fs1"
,
"fs2"
,
"fs3"
,
"ss1"
,
"ss2"
,
"ss3"
,
"fp1"
,
"fp2"
,
"fp3"
,
"sp1"
,
"sp2"
,
"sp3"
,
"p1"
,
"p2"
,
"p3"
]
examples
=
[]
for
diary_info
in
diary_lst
:
tmp
=
{}
tmp
.
update
(
device_info
)
tmp
.
update
(
diary_info
)
features
=
{}
for
col
in
int_columns
:
for
col
in
_
int_columns
:
features
[
col
]
=
_int64_feature
(
int
(
tmp
[
col
]))
for
col
in
float_columns
:
for
col
in
_
float_columns
:
features
[
col
]
=
_float_feature
(
float
(
tmp
[
col
]))
for
col
in
str
_columns
:
for
col
in
_categorical
_columns
:
features
[
col
]
=
_bytes_feature
(
str
(
tmp
[
col
])
.
encode
(
encoding
=
"utf-8"
))
example
=
tf
.
train
.
Example
(
features
=
tf
.
train
.
Features
(
feature
=
features
))
examples
.
append
(
example
.
SerializeToString
())
...
...
src/train_diary.py
View file @
78361361
...
...
@@ -9,7 +9,7 @@ from pathlib import Path
import
tensorflow
as
tf
from
sklearn.model_selection
import
train_test_split
from
models.esmm.diary_model
import
model_predict_diary
from
models.esmm.diary_model
import
PREDICTION_ALL_COLUMNS
,
model_predict_diary
from
models.esmm.fe
import
click_fe
,
device_fe
,
diary_fe
,
fe
from
models.esmm.input_fn
import
esmm_input_fn
from
models.esmm.model
import
esmm_model_fn
,
model_export
...
...
@@ -22,58 +22,59 @@ def main():
# os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
# data_path = Path("~/data/cvr_data").expanduser() # local
data_path
=
Path
(
"/srv/apps/node2vec_git/cvr_data/"
)
# server
diary_df
,
diary_click_df
,
diary_conversion_df
=
diary_fe
.
read_csv_data
(
data_path
)
# print(diary_df.sample(1))
diary_df
=
diary_fe
.
diary_feature_engineering
(
diary_df
)
# print(diary_df.sample(1))
device_df
=
device_fe
.
read_csv_data
(
data_path
)
# print(diary_df.sample(1))
device_df
=
device_fe
.
device_feature_engineering
(
device_df
,
"diary"
)
# print(device_df.sample(1))
cc_df
=
click_fe
.
click_feature_engineering
(
diary_click_df
,
diary_conversion_df
)
# print(cc_df.sample(1))
df
=
diary_fe
.
join_features
(
device_df
,
diary_df
,
cc_df
)
# print(df.sample(1))
# print(df.dtypes)
train_df
,
test_df
=
train_test_split
(
df
,
test_size
=
0.2
)
train_df
,
val_df
=
train_test_split
(
train_df
,
test_size
=
0.2
)
all_features
=
fe
.
build_features
(
df
,
diary_fe
.
INT_COLUMNS
,
diary_fe
.
FLOAT_COLUMNS
,
diary_fe
.
CATEGORICAL_COLUMNS
)
params
=
{
"feature_columns"
:
all_features
,
"hidden_units"
:
[
64
,
32
],
"learning_rate"
:
0.1
}
model_path
=
str
(
Path
(
"~/data/model_tmp/"
)
.
expanduser
())
# if os.path.exists(model_path):
# shutil.rmtree(model_path)
session_config
=
tf
.
compat
.
v1
.
ConfigProto
()
session_config
.
gpu_options
.
allow_growth
=
True
session_config
.
gpu_options
.
per_process_gpu_memory_fraction
=
0.9
estimator_config
=
tf
.
estimator
.
RunConfig
(
session_config
=
session_config
)
model
=
tf
.
estimator
.
Estimator
(
model_fn
=
esmm_model_fn
,
params
=
params
,
model_dir
=
model_path
,
config
=
estimator_config
)
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
train_df
,
shuffle
=
True
),
max_steps
=
50000
)
eval_spec
=
tf
.
estimator
.
EvalSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
val_df
,
shuffle
=
False
))
tf
.
estimator
.
train_and_evaluate
(
model
,
train_spec
,
eval_spec
)
model_export_path
=
str
(
Path
(
"~/data/models/diary"
)
.
expanduser
())
save_path
=
model_export
(
model
,
all_features
,
model_export_path
)
print
(
"save to: "
+
save_path
)
# # data_path = Path("~/data/cvr_data").expanduser() # local
# data_path = Path("/srv/apps/node2vec_git/cvr_data/") # server
# diary_df, diary_click_df, diary_conversion_df = diary_fe.read_csv_data(data_path)
# # print(diary_df.sample(1))
# diary_df = diary_fe.diary_feature_engineering(diary_df)
# # print(diary_df.sample(1))
# device_df = device_fe.read_csv_data(data_path)
# # print(diary_df.sample(1))
# device_df = device_fe.device_feature_engineering(device_df, "diary")
# # print(device_df.sample(1))
# cc_df = click_fe.click_feature_engineering(diary_click_df, diary_conversion_df)
# # print(cc_df.sample(1))
# df = diary_fe.join_features(device_df, diary_df, cc_df)
# # print(df.sample(1))
# # print(df.dtypes)
# train_df, test_df = train_test_split(df, test_size=0.2)
# train_df, val_df = train_test_split(train_df, test_size=0.2)
# all_features = fe.build_features(df, diary_fe.INT_COLUMNS, diary_fe.FLOAT_COLUMNS, diary_fe.CATEGORICAL_COLUMNS)
# params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
# model_path = str(Path("~/data/model_tmp/").expanduser())
# # if os.path.exists(model_path):
# # shutil.rmtree(model_path)
# session_config = tf.compat.v1.ConfigProto()
# session_config.gpu_options.allow_growth = True
# session_config.gpu_options.per_process_gpu_memory_fraction = 0.9
# estimator_config = tf.estimator.RunConfig(session_config=session_config)
# model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config)
# train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=50000)
# eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False))
# tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
# model_export_path = str(Path("~/data/models/diary").expanduser())
# save_path = model_export(model, all_features, model_export_path)
# print("save to: " + save_path)
diary_train_columns
=
set
(
diary_fe
.
INT_COLUMNS
+
diary_fe
.
FLOAT_COLUMNS
+
diary_fe
.
CATEGORICAL_COLUMNS
)
diary_predict_columns
=
set
(
PREDICTION_ALL_COLUMNS
)
print
(
diary_predict_columns
.
difference
(
diary_train_columns
))
print
(
diary_train_columns
.
difference
(
diary_predict_columns
))
assert
diary_predict_columns
==
diary_train_columns
print
(
"============================================================"
)
# save_path = str(Path("~/Desktop/models/1596012827").expanduser()) # local
#
save_path = "/home/gmuser/data/models/diary/1596083349" # server
save_path
=
"/home/gmuser/data/models/diary/1596083349"
# server
# tf.saved_model.load
predict_fn
=
tf
.
contrib
.
predictor
.
from_saved_model
(
save_path
)
print
(
"============================================================"
)
# device_id = "861601036552944"
# diary_ids = [
# "16195283", "16838351", "17161073", "17297878", "17307484", "17396235", "16418737", "16995481", "17312201", "12237988"
# ]
device_dict
=
device_fe
.
get_device_dict_from_redis
()
diary_dict
=
diary_fe
.
get_diary_dict_from_redis
()
...
...
src/train_tractate.py
View file @
78361361
...
...
@@ -76,9 +76,9 @@ def main():
device_ids
=
list
(
device_dict
.
keys
())[:
20
]
tractate_ids
=
list
(
tractate_dict
.
keys
())
print
(
len
(
device_dict
),
len
(
tractate_dict
),
"
\n
"
)
print
(
device_dict
[
device_ids
[
0
]],
"
\n
"
)
print
(
tractate_dict
[
tractate_ids
[
0
]],
"
\n
"
)
#
print(len(device_dict), len(tractate_dict), "\n")
#
print(device_dict[device_ids[0]], "\n")
#
print(tractate_dict[tractate_ids[0]], "\n")
for
i
in
range
(
5
):
time_1
=
timeit
.
default_timer
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment