Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
G
gm_strategy_cvr
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
gm_strategy_cvr
Commits
873bd10a
Commit
873bd10a
authored
Jul 23, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update steps
parent
8d3e3cce
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
4 additions
and
5 deletions
+4
-5
main.py
src/main.py
+1
-1
model.py
src/models/esmm/model.py
+3
-4
No files found.
src/main.py
View file @
873bd10a
...
@@ -42,7 +42,7 @@ def main():
...
@@ -42,7 +42,7 @@ def main():
# shutil.rmtree(model_path)
# shutil.rmtree(model_path)
model
=
tf
.
estimator
.
Estimator
(
model_fn
=
esmm_model_fn
,
params
=
params
,
model_dir
=
model_path
)
model
=
tf
.
estimator
.
Estimator
(
model_fn
=
esmm_model_fn
,
params
=
params
,
model_dir
=
model_path
)
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
train_df
,
shuffle
=
True
),
max_steps
=
None
)
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
train_df
,
shuffle
=
True
),
max_steps
=
10000
)
eval_spec
=
tf
.
estimator
.
EvalSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
val_df
,
shuffle
=
False
))
eval_spec
=
tf
.
estimator
.
EvalSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
val_df
,
shuffle
=
False
))
tf
.
estimator
.
train_and_evaluate
(
model
,
train_spec
,
eval_spec
)
tf
.
estimator
.
train_and_evaluate
(
model
,
train_spec
,
eval_spec
)
...
...
src/models/esmm/model.py
View file @
873bd10a
...
@@ -58,9 +58,7 @@ def esmm_model_fn(features, labels, mode, params):
...
@@ -58,9 +58,7 @@ def esmm_model_fn(features, labels, mode, params):
ctcvr_loss
=
tf
.
reduce_sum
(
tf
.
compat
.
v1
.
losses
.
log_loss
(
labels
=
cvr_labels
,
predictions
=
ctcvr_preds
))
ctcvr_loss
=
tf
.
reduce_sum
(
tf
.
compat
.
v1
.
losses
.
log_loss
(
labels
=
cvr_labels
,
predictions
=
ctcvr_preds
))
loss
=
ctr_loss
+
ctcvr_loss
loss
=
ctr_loss
+
ctcvr_loss
if
mode
==
tf
.
estimator
.
ModeKeys
.
EVAL
:
ctr_accuracy
=
tf
.
compat
.
v1
.
metrics
.
accuracy
(
labels
=
ctr_labels
,
predictions
=
tf
.
to_float
(
tf
.
greater_equal
(
ctr_preds
,
0.5
)))
ctr_accuracy
=
tf
.
compat
.
v1
.
metrics
.
accuracy
(
labels
=
ctr_labels
,
predictions
=
tf
.
to_float
(
tf
.
greater_equal
(
ctr_preds
,
0.5
)))
ctcvr_accuracy
=
tf
.
compat
.
v1
.
metrics
.
accuracy
(
labels
=
cvr_labels
,
ctcvr_accuracy
=
tf
.
compat
.
v1
.
metrics
.
accuracy
(
labels
=
cvr_labels
,
predictions
=
tf
.
to_float
(
tf
.
greater_equal
(
ctcvr_preds
,
0.5
)))
predictions
=
tf
.
to_float
(
tf
.
greater_equal
(
ctcvr_preds
,
0.5
)))
ctr_auc
=
tf
.
compat
.
v1
.
metrics
.
auc
(
labels
=
ctr_labels
,
predictions
=
ctr_preds
)
ctr_auc
=
tf
.
compat
.
v1
.
metrics
.
auc
(
labels
=
ctr_labels
,
predictions
=
ctr_preds
)
...
@@ -70,9 +68,10 @@ def esmm_model_fn(features, labels, mode, params):
...
@@ -70,9 +68,10 @@ def esmm_model_fn(features, labels, mode, params):
tf
.
compat
.
v1
.
summary
.
scalar
(
"ctcvr_accuracy"
,
ctcvr_accuracy
[
1
])
tf
.
compat
.
v1
.
summary
.
scalar
(
"ctcvr_accuracy"
,
ctcvr_accuracy
[
1
])
tf
.
compat
.
v1
.
summary
.
scalar
(
"ctr_auc"
,
ctr_auc
[
1
])
tf
.
compat
.
v1
.
summary
.
scalar
(
"ctr_auc"
,
ctr_auc
[
1
])
tf
.
compat
.
v1
.
summary
.
scalar
(
"ctcvr_auc"
,
ctcvr_auc
[
1
])
tf
.
compat
.
v1
.
summary
.
scalar
(
"ctcvr_auc"
,
ctcvr_auc
[
1
])
if
mode
==
tf
.
estimator
.
ModeKeys
.
EVAL
:
return
tf
.
estimator
.
EstimatorSpec
(
mode
,
loss
=
loss
,
eval_metric_ops
=
metrics
)
return
tf
.
estimator
.
EstimatorSpec
(
mode
,
loss
=
loss
,
eval_metric_ops
=
metrics
)
train_op
=
optimizer
.
minimize
(
loss
,
global_step
=
tf
.
compat
.
v1
.
train
.
get_global_step
())
train_op
=
optimizer
.
minimize
(
loss
,
global_step
=
tf
.
compat
.
v1
.
train
.
get_global_step
())
res
=
tf
.
estimator
.
EstimatorSpec
(
mode
,
loss
=
loss
,
train_op
=
train_op
)
res
=
tf
.
estimator
.
EstimatorSpec
(
mode
,
loss
=
loss
,
train_op
=
train_op
,
eval_metric_ops
=
metrics
)
return
res
return
res
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment