Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
strategy_embedding
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
strategy_embedding
Commits
445b2c54
Commit
445b2c54
authored
Nov 06, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
get the model
parent
2be148e6
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
406 additions
and
263 deletions
+406
-263
dssm_model.py
dssm/dssm_model.py
+0
-260
dssm_tractate_model.py
dssm/dssm_tractate_model.py
+406
-3
No files found.
dssm/dssm_model.py
deleted
100644 → 0
View file @
2be148e6
import
os
import
numpy
as
np
import
pandas
as
pd
import
tensorflow
as
tf
from
tensorflow.keras
import
activations
,
layers
,
losses
,
metrics
,
optimizers
base_dir
=
os
.
getcwd
()
# base_dir = "/Users/offic/work/GM/strategy_embedding/" # TODO remove
DATA_PATH
=
os
.
path
.
join
(
base_dir
,
"_data"
)
MODEL_PATH
=
os
.
path
.
join
(
base_dir
,
"_models"
)
DEVICE_COLUMNS
=
[
"device_id"
,
"device_fd"
,
"device_sd"
,
"device_fs"
,
"device_ss"
,
"device_fp"
,
"device_sp"
,
"device_p"
,
"device_fd2"
,
"device_sd2"
,
"device_fs2"
,
"device_ss2"
,
"device_fp2"
,
"device_sp2"
,
"device_p2"
,
]
LABEL_COLUMNS
=
"label"
TRACTATE_COLUMNS
=
[
"card_id"
,
"is_pure_author"
,
"is_have_pure_reply"
,
"is_have_reply"
,
"content_level"
,
"topic_seven_click_num"
,
"topic_thirty_click_num"
,
"topic_num"
,
"seven_transform_num"
,
"thirty_transform_num"
,
"favor_num"
,
"favor_pure_num"
,
"vote_num"
,
"vote_display_num"
,
"reply_num"
,
"reply_pure_num"
,
"one_click_num"
,
"three_click_num"
,
"seven_click_num"
,
"fifteen_click_num"
,
"thirty_click_num"
,
"sixty_click_num"
,
"ninety_click_num"
,
"history_click_num"
,
"one_precise_exposure_num"
,
"three_precise_exposure_num"
,
"seven_precise_exposure_num"
,
"fifteen_precise_exposure_num"
,
"thirty_precise_exposure_num"
,
"sixty_precise_exposure_num"
,
"ninety_precise_exposure_num"
,
"history_precise_exposure_num"
,
"one_vote_user_num"
,
"three_vote_user_num"
,
"seven_vote_user_num"
,
"fifteen_vote_user_num"
,
"thirty_vote_user_num"
,
"sixty_vote_user_num"
,
"ninety_vote_user_num"
,
"history_vote_user_num"
,
"one_reply_user_num"
,
"three_reply_user_num"
,
"seven_reply_user_num"
,
"fifteen_reply_user_num"
,
"thirty_reply_user_num"
,
"sixty_reply_user_num"
,
"ninety_reply_user_num"
,
"history_reply_user_num"
,
"one_browse_user_num"
,
"three_browse_user_num"
,
"seven_browse_user_num"
,
"fifteen_browse_user_num"
,
"thirty_browse_user_num"
,
"sixty_browse_user_num"
,
"ninety_browse_user_num"
,
"history_browse_user_num"
,
"one_reply_num"
,
"three_reply_num"
,
"seven_reply_num"
,
"fifteen_reply_num"
,
"thirty_reply_num"
,
"sixty_reply_num"
,
"ninety_reply_num"
,
"history_reply_num"
,
"one_ctr"
,
"three_ctr"
,
"seven_ctr"
,
"fifteen_ctr"
,
"thirty_ctr"
,
"sixty_ctr"
,
"ninety_ctr"
,
"history_ctr"
,
"one_vote_pure_rate"
,
"three_vote_pure_rate"
,
"seven_vote_pure_rate"
,
"fifteen_vote_pure_rate"
,
"thirty_vote_pure_rate"
,
"sixty_vote_pure_rate"
,
"ninety_vote_pure_rate"
,
"history_vote_pure_rate"
,
"one_reply_pure_rate"
,
"three_reply_pure_rate"
,
"seven_reply_pure_rate"
,
"fifteen_reply_pure_rate"
,
"thirty_reply_pure_rate"
,
"sixty_reply_pure_rate"
,
"ninety_reply_pure_rate"
,
"history_reply_pure_rate"
,
"card_fd"
,
"card_sd"
,
"card_fs"
,
"card_ss"
,
"card_fp"
,
"card_sp"
,
"card_p"
,
"card_fd2"
,
"card_sd2"
,
"card_fs2"
,
"card_ss2"
,
"card_fp2"
,
"card_sp2"
,
"card_p2"
,
]
def
nth_element
(
lst
,
n
):
if
n
>=
len
(
lst
):
return
""
return
lst
[
n
]
def
get_df
(
file
):
full_path
=
os
.
path
.
join
(
DATA_PATH
,
file
)
df
=
pd
.
read_csv
(
full_path
,
sep
=
"|"
)
return
df
def
device_tractae_fe
():
click_df
=
get_df
(
"tractate_click.csv"
)
exposure_df
=
get_df
(
"tractate_exposure.csv"
)
device_fe_df
=
get_df
(
"device_feature.csv"
)
tractate_fe_df
=
get_df
(
"tractate_feature.csv"
)
print
(
click_df
.
shape
)
print
(
exposure_df
.
shape
)
print
(
device_fe_df
.
shape
)
print
(
tractate_fe_df
.
shape
)
#
click_df
.
drop
(
"partition_date"
,
inplace
=
True
,
axis
=
1
)
exposure_df
.
drop
(
"partition_date"
,
inplace
=
True
,
axis
=
1
)
base_df
=
pd
.
merge
(
click_df
,
exposure_df
,
how
=
"outer"
,
indicator
=
"Exist"
)
base_df
[
"label"
]
=
np
.
where
(
base_df
[
"Exist"
]
==
"right_only"
,
0.75
,
1.0
)
base_df
.
drop
(
"Exist"
,
inplace
=
True
,
axis
=
1
)
#
device_fe_df
.
fillna
(
""
,
inplace
=
True
)
device_fe_df
.
rename
(
columns
=
{
"cl_id"
:
"device_id"
},
inplace
=
True
)
device_fe_df
[
"first_demands"
]
=
device_fe_df
[
"first_demands"
]
.
str
.
split
(
","
)
.
\
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
device_fe_df
[
"second_demands"
]
=
device_fe_df
[
"second_demands"
]
.
str
.
split
(
","
)
.
\
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
device_fe_df
[
"first_solutions"
]
=
device_fe_df
[
"first_solutions"
]
.
str
.
split
(
","
)
.
\
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
device_fe_df
[
"second_solutions"
]
=
device_fe_df
[
"second_solutions"
]
.
str
.
split
(
","
)
.
\
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
device_fe_df
[
"first_positions"
]
=
device_fe_df
[
"first_positions"
]
.
str
.
split
(
","
)
.
\
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
device_fe_df
[
"second_positions"
]
=
device_fe_df
[
"second_positions"
]
.
str
.
split
(
","
)
.
\
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
device_fe_df
[
"projects"
]
=
device_fe_df
[
"projects"
]
.
str
.
split
(
","
)
.
\
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
device_fe_df
[
"device_fd"
]
=
device_fe_df
[
"first_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
device_fe_df
[
"device_sd"
]
=
device_fe_df
[
"second_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
device_fe_df
[
"device_fs"
]
=
device_fe_df
[
"first_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
device_fe_df
[
"device_ss"
]
=
device_fe_df
[
"second_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
device_fe_df
[
"device_fp"
]
=
device_fe_df
[
"first_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
device_fe_df
[
"device_sp"
]
=
device_fe_df
[
"second_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
device_fe_df
[
"device_p"
]
=
device_fe_df
[
"projects"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
device_fe_df
[
"device_fd2"
]
=
device_fe_df
[
"first_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
device_fe_df
[
"device_sd2"
]
=
device_fe_df
[
"second_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
device_fe_df
[
"device_fs2"
]
=
device_fe_df
[
"first_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
device_fe_df
[
"device_ss2"
]
=
device_fe_df
[
"second_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
device_fe_df
[
"device_fp2"
]
=
device_fe_df
[
"first_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
device_fe_df
[
"device_sp2"
]
=
device_fe_df
[
"second_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
device_fe_df
[
"device_p2"
]
=
device_fe_df
[
"projects"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
_drop_columns
=
[
"first_demands"
,
"second_demands"
,
"first_solutions"
,
"second_solutions"
,
"first_positions"
,
"second_positions"
,
"projects"
]
device_fe_df
.
drop
(
columns
=
_drop_columns
,
axis
=
1
,
inplace
=
True
)
#
_card_drop_columns
=
[
"card_first_demands"
,
"card_second_demands"
,
"card_first_solutions"
,
"card_second_solutions"
,
"card_first_positions"
,
"card_second_positions"
,
"card_projects"
]
tractate_fe_df
[
_card_drop_columns
]
.
fillna
(
""
,
inplace
=
True
)
tractate_fe_df
[
"card_first_demands"
]
=
tractate_fe_df
[
"card_first_demands"
]
.
str
.
split
(
","
)
.
\
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
tractate_fe_df
[
"card_second_demands"
]
=
tractate_fe_df
[
"card_second_demands"
]
.
str
.
split
(
","
)
.
\
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
tractate_fe_df
[
"card_first_solutions"
]
=
tractate_fe_df
[
"card_first_solutions"
]
.
str
.
split
(
","
)
.
\
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
tractate_fe_df
[
"card_second_solutions"
]
=
tractate_fe_df
[
"card_second_solutions"
]
.
str
.
split
(
","
)
.
\
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
tractate_fe_df
[
"card_first_positions"
]
=
tractate_fe_df
[
"card_first_positions"
]
.
str
.
split
(
","
)
.
\
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
tractate_fe_df
[
"card_second_positions"
]
=
tractate_fe_df
[
"card_second_positions"
]
.
str
.
split
(
","
)
.
\
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
tractate_fe_df
[
"card_projects"
]
=
tractate_fe_df
[
"card_projects"
]
.
str
.
split
(
","
)
.
\
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
tractate_fe_df
[
"card_fd"
]
=
tractate_fe_df
[
"card_first_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
tractate_fe_df
[
"card_sd"
]
=
tractate_fe_df
[
"card_second_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
tractate_fe_df
[
"card_fs"
]
=
tractate_fe_df
[
"card_first_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
tractate_fe_df
[
"card_ss"
]
=
tractate_fe_df
[
"card_second_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
tractate_fe_df
[
"card_fp"
]
=
tractate_fe_df
[
"card_first_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
tractate_fe_df
[
"card_sp"
]
=
tractate_fe_df
[
"card_second_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
tractate_fe_df
[
"card_p"
]
=
tractate_fe_df
[
"card_projects"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
tractate_fe_df
[
"card_fd2"
]
=
tractate_fe_df
[
"card_first_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
tractate_fe_df
[
"card_sd2"
]
=
tractate_fe_df
[
"card_second_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
tractate_fe_df
[
"card_fs2"
]
=
tractate_fe_df
[
"card_first_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
tractate_fe_df
[
"card_ss2"
]
=
tractate_fe_df
[
"card_second_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
tractate_fe_df
[
"card_fp2"
]
=
tractate_fe_df
[
"card_first_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
tractate_fe_df
[
"card_sp2"
]
=
tractate_fe_df
[
"card_second_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
tractate_fe_df
[
"card_p2"
]
=
tractate_fe_df
[
"card_projects"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
tractate_fe_df
.
drop
(
columns
=
_card_drop_columns
,
axis
=
1
,
inplace
=
True
)
#
df
=
pd
.
merge
(
pd
.
merge
(
base_df
,
device_fe_df
),
tractate_fe_df
)
nullseries
=
df
.
isnull
()
.
sum
()
nulls
=
nullseries
[
nullseries
>
0
]
if
nulls
.
any
():
print
(
nulls
)
raise
Exception
(
"dataframe nulls"
)
return
df
if
__name__
==
"__main__"
:
df
=
device_tractae_fe
()
print
(
df
.
head
(
3
),
df
.
shape
)
dssm/dssm_tractate_model.py
View file @
445b2c54
...
@@ -6,7 +6,7 @@ import tensorflow as tf
...
@@ -6,7 +6,7 @@ import tensorflow as tf
from
tensorflow.keras
import
activations
,
layers
,
losses
,
metrics
,
optimizers
from
tensorflow.keras
import
activations
,
layers
,
losses
,
metrics
,
optimizers
base_dir
=
os
.
getcwd
()
base_dir
=
os
.
getcwd
()
base_dir
=
"/Users/offic/work/GM/strategy_embedding/"
# TODO remove
#
base_dir = "/Users/offic/work/GM/strategy_embedding/" # TODO remove
DATA_PATH
=
os
.
path
.
join
(
base_dir
,
"_data"
)
DATA_PATH
=
os
.
path
.
join
(
base_dir
,
"_data"
)
MODEL_PATH
=
os
.
path
.
join
(
base_dir
,
"_models"
)
MODEL_PATH
=
os
.
path
.
join
(
base_dir
,
"_models"
)
...
@@ -28,8 +28,6 @@ DEVICE_COLUMNS = [
...
@@ -28,8 +28,6 @@ DEVICE_COLUMNS = [
"device_p2"
,
"device_p2"
,
]
]
LABEL_COLUMNS
=
"label"
TRACTATE_COLUMNS
=
[
TRACTATE_COLUMNS
=
[
"card_id"
,
"card_id"
,
"is_pure_author"
,
"is_pure_author"
,
...
@@ -255,6 +253,411 @@ def device_tractae_fe():
...
@@ -255,6 +253,411 @@ def device_tractae_fe():
return
df
return
df
def
get_input_dim
(
df
,
columns
):
res
=
{}
for
i
in
columns
:
res
[
i
]
=
df
[
i
]
.
unique
()
.
size
+
1
return
res
def
tractate_dssm_model
():
# input
device_id
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"device_id"
)
device_fd
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"device_fd"
)
device_sd
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"device_sd"
)
device_fs
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"device_fs"
)
device_ss
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"device_ss"
)
device_fp
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"device_fp"
)
device_sp
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"device_sp"
)
device_p
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"device_p"
)
device_fd2
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"device_fd2"
)
device_sd2
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"device_sd2"
)
device_fs2
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"device_fs2"
)
device_ss2
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"device_ss2"
)
device_fp2
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"device_fp2"
)
device_sp2
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"device_sp2"
)
device_p2
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"device_p2"
)
card_id
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"card_id"
),
is_pure_author
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"is_pure_author"
),
is_have_pure_reply
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"is_have_pure_reply"
),
is_have_reply
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"is_have_reply"
),
content_level
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"content_level"
),
topic_seven_click_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"topic_seven_click_num"
),
topic_thirty_click_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"topic_thirty_click_num"
),
topic_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"topic_num"
),
seven_transform_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"seven_transform_num"
),
thirty_transform_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"thirty_transform_num"
),
favor_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"favor_num"
),
favor_pure_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"favor_pure_num"
),
vote_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"vote_num"
),
vote_display_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"vote_display_num"
),
reply_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"reply_num"
),
reply_pure_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"reply_pure_num"
),
one_click_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"one_click_num"
),
three_click_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"three_click_num"
),
seven_click_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"seven_click_num"
),
fifteen_click_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"fifteen_click_num"
),
thirty_click_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"thirty_click_num"
),
sixty_click_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"sixty_click_num"
),
ninety_click_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"ninety_click_num"
),
history_click_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"history_click_num"
),
one_precise_exposure_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"one_precise_exposure_num"
),
three_precise_exposure_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"three_precise_exposure_num"
),
seven_precise_exposure_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"seven_precise_exposure_num"
),
fifteen_precise_exposure_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"fifteen_precise_exposure_num"
),
thirty_precise_exposure_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"thirty_precise_exposure_num"
),
sixty_precise_exposure_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"sixty_precise_exposure_num"
),
ninety_precise_exposure_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"ninety_precise_exposure_num"
),
history_precise_exposure_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"history_precise_exposure_num"
),
one_vote_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"one_vote_user_num"
),
three_vote_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"three_vote_user_num"
),
seven_vote_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"seven_vote_user_num"
),
fifteen_vote_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"fifteen_vote_user_num"
),
thirty_vote_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"thirty_vote_user_num"
),
sixty_vote_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"sixty_vote_user_num"
),
ninety_vote_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"ninety_vote_user_num"
),
history_vote_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"history_vote_user_num"
),
one_reply_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"one_reply_user_num"
),
three_reply_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"three_reply_user_num"
),
seven_reply_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"seven_reply_user_num"
),
fifteen_reply_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"fifteen_reply_user_num"
),
thirty_reply_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"thirty_reply_user_num"
),
sixty_reply_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"sixty_reply_user_num"
),
ninety_reply_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"ninety_reply_user_num"
),
history_reply_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"history_reply_user_num"
),
one_browse_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"one_browse_user_num"
),
three_browse_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"three_browse_user_num"
),
seven_browse_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"seven_browse_user_num"
),
fifteen_browse_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"fifteen_browse_user_num"
),
thirty_browse_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"thirty_browse_user_num"
),
sixty_browse_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"sixty_browse_user_num"
),
ninety_browse_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"ninety_browse_user_num"
),
history_browse_user_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"history_browse_user_num"
),
one_reply_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"one_reply_num"
),
three_reply_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"three_reply_num"
),
seven_reply_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"seven_reply_num"
),
fifteen_reply_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"fifteen_reply_num"
),
thirty_reply_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"thirty_reply_num"
),
sixty_reply_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"sixty_reply_num"
),
ninety_reply_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"ninety_reply_num"
),
history_reply_num
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"history_reply_num"
),
one_ctr
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"one_ctr"
),
three_ctr
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"three_ctr"
),
seven_ctr
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"seven_ctr"
),
fifteen_ctr
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"fifteen_ctr"
),
thirty_ctr
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"thirty_ctr"
),
sixty_ctr
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"sixty_ctr"
),
ninety_ctr
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"ninety_ctr"
),
history_ctr
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"history_ctr"
),
one_vote_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"one_vote_pure_rate"
),
three_vote_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"three_vote_pure_rate"
),
seven_vote_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"seven_vote_pure_rate"
),
fifteen_vote_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"fifteen_vote_pure_rate"
),
thirty_vote_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"thirty_vote_pure_rate"
),
sixty_vote_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"sixty_vote_pure_rate"
),
ninety_vote_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"ninety_vote_pure_rate"
),
history_vote_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"history_vote_pure_rate"
),
one_reply_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"one_reply_pure_rate"
),
three_reply_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"three_reply_pure_rate"
),
seven_reply_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"seven_reply_pure_rate"
),
fifteen_reply_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"fifteen_reply_pure_rate"
),
thirty_reply_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"thirty_reply_pure_rate"
),
sixty_reply_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"sixty_reply_pure_rate"
),
ninety_reply_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"ninety_reply_pure_rate"
),
history_reply_pure_rate
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"history_reply_pure_rate"
),
card_fd
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"card_fd"
),
card_sd
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"card_sd"
),
card_fs
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"card_fs"
),
card_ss
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"card_ss"
),
card_fp
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"card_fp"
),
card_sp
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"card_sp"
),
card_p
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"card_p"
),
card_fd2
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"card_fd2"
),
card_sd2
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"card_sd2"
),
card_fs2
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"card_fs2"
),
card_ss2
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"card_ss2"
),
card_fp2
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"card_fp2"
),
card_sp2
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"card_sp2"
),
card_p2
=
layers
.
Input
(
shape
=
(
1
,
),
name
=
"card_p2"
),
# user tower
device_vector
=
layers
.
concatenate
([
layers
.
Embedding
(
DEVICE_DIM_DICT
.
get
(
"device_id"
),
1000
)(
device_id
),
layers
.
Embedding
(
DEVICE_DIM_DICT
.
get
(
"device_fd"
),
int
(
DEVICE_DIM_DICT
.
get
(
"device_fd"
)
/
10
))(
device_fd
),
layers
.
Embedding
(
DEVICE_DIM_DICT
.
get
(
"device_sd"
),
int
(
DEVICE_DIM_DICT
.
get
(
"device_sd"
)
/
10
))(
device_sd
),
layers
.
Embedding
(
DEVICE_DIM_DICT
.
get
(
"device_fs"
),
int
(
DEVICE_DIM_DICT
.
get
(
"device_fs"
)
/
10
))(
device_fs
),
layers
.
Embedding
(
DEVICE_DIM_DICT
.
get
(
"device_ss"
),
int
(
DEVICE_DIM_DICT
.
get
(
"device_ss"
)
/
10
))(
device_ss
),
layers
.
Embedding
(
DEVICE_DIM_DICT
.
get
(
"device_fp"
),
int
(
DEVICE_DIM_DICT
.
get
(
"device_fp"
)
/
10
))(
device_fp
),
layers
.
Embedding
(
DEVICE_DIM_DICT
.
get
(
"device_sp"
),
int
(
DEVICE_DIM_DICT
.
get
(
"device_sp"
)
/
10
))(
device_sp
),
layers
.
Embedding
(
DEVICE_DIM_DICT
.
get
(
"device_p"
),
int
(
DEVICE_DIM_DICT
.
get
(
"device_p"
)
/
10
))(
device_p
),
layers
.
Embedding
(
DEVICE_DIM_DICT
.
get
(
"device_fd2"
),
int
(
DEVICE_DIM_DICT
.
get
(
"device_fd2"
)
/
10
))(
device_fd2
),
layers
.
Embedding
(
DEVICE_DIM_DICT
.
get
(
"device_sd2"
),
int
(
DEVICE_DIM_DICT
.
get
(
"device_sd2"
)
/
10
))(
device_sd2
),
layers
.
Embedding
(
DEVICE_DIM_DICT
.
get
(
"device_fs2"
),
int
(
DEVICE_DIM_DICT
.
get
(
"device_fs2"
)
/
10
))(
device_fs2
),
layers
.
Embedding
(
DEVICE_DIM_DICT
.
get
(
"device_ss2"
),
int
(
DEVICE_DIM_DICT
.
get
(
"device_ss2"
)
/
10
))(
device_ss2
),
layers
.
Embedding
(
DEVICE_DIM_DICT
.
get
(
"device_fp2"
),
int
(
DEVICE_DIM_DICT
.
get
(
"device_fp2"
)
/
10
))(
device_fp2
),
layers
.
Embedding
(
DEVICE_DIM_DICT
.
get
(
"device_sp"
),
int
(
DEVICE_DIM_DICT
.
get
(
"device_sp2"
)
/
10
))(
device_sp2
),
layers
.
Embedding
(
DEVICE_DIM_DICT
.
get
(
"device_p2"
),
int
(
DEVICE_DIM_DICT
.
get
(
"device_p2"
)
/
10
))(
device_p2
),
])
device_vector
=
layers
.
Dense
(
3000
,
activation
=
activations
.
relu
)(
device_vector
)
device_vector
=
layers
.
Dense
(
1000
,
activation
=
activations
.
relu
,
name
=
"device_embedding"
,
kernel_regularizer
=
"l2"
,
)(
device_vector
)
# item tower
tractate_vector
=
layers
.
concatenate
(
[
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"card_id"
),
3000
)(
card_id
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"is_pure_author"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"is_pure_author"
)
/
10
))(
is_pure_author
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"is_have_pure_reply"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"is_have_pure_reply"
)
/
10
))(
is_have_pure_reply
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"is_have_reply"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"is_have_reply"
)
/
10
))(
is_have_reply
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"content_level"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"content_level"
)
/
10
))(
content_level
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"topic_seven_click_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"topic_seven_click_num"
)
/
10
))(
topic_seven_click_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"topic_thirty_click_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"topic_thirty_click_num"
)
/
10
))(
topic_thirty_click_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"topic_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"topic_num"
)
/
10
))(
topic_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"seven_transform_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"seven_transform_num"
)
/
10
))(
seven_transform_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"thirty_transform_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"thirty_transform_num"
)
/
10
))(
thirty_transform_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"favor_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"favor_num"
)
/
10
))(
favor_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"favor_pure_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"favor_pure_num"
)
/
10
))(
favor_pure_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"vote_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"vote_num"
)
/
10
))(
vote_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"vote_display_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"vote_display_num"
)
/
10
))(
vote_display_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"reply_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"reply_num"
)
/
10
))(
reply_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"reply_pure_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"reply_pure_num"
)
/
10
))(
reply_pure_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"one_click_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"one_click_num"
)
/
10
))(
one_click_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"three_click_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"three_click_num"
)
/
10
))(
three_click_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"seven_click_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"seven_click_num"
)
/
10
))(
seven_click_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_click_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_click_num"
)
/
10
))(
fifteen_click_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"thirty_click_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"thirty_click_num"
)
/
10
))(
thirty_click_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"sixty_click_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"sixty_click_num"
)
/
10
))(
sixty_click_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"ninety_click_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"ninety_click_num"
)
/
10
))(
ninety_click_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"history_click_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"history_click_num"
)
/
10
))(
history_click_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"one_precise_exposure_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"one_precise_exposure_num"
)
/
10
))(
one_precise_exposure_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"three_precise_exposure_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"three_precise_exposure_num"
)
/
10
))(
three_precise_exposure_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"seven_precise_exposure_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"seven_precise_exposure_num"
)
/
10
))(
seven_precise_exposure_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_precise_exposure_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_precise_exposure_num"
)
/
10
))(
fifteen_precise_exposure_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"thirty_precise_exposure_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"thirty_precise_exposure_num"
)
/
10
))(
thirty_precise_exposure_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"sixty_precise_exposure_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"sixty_precise_exposure_num"
)
/
10
))(
sixty_precise_exposure_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"ninety_precise_exposure_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"ninety_precise_exposure_num"
)
/
10
))(
ninety_precise_exposure_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"history_precise_exposure_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"history_precise_exposure_num"
)
/
10
))(
history_precise_exposure_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"one_vote_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"one_vote_user_num"
)
/
10
))(
one_vote_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"three_vote_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"three_vote_user_num"
)
/
10
))(
three_vote_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"seven_vote_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"seven_vote_user_num"
)
/
10
))(
seven_vote_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_vote_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_vote_user_num"
)
/
10
))(
fifteen_vote_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"thirty_vote_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"thirty_vote_user_num"
)
/
10
))(
thirty_vote_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"sixty_vote_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"sixty_vote_user_num"
)
/
10
))(
sixty_vote_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"ninety_vote_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"ninety_vote_user_num"
)
/
10
))(
ninety_vote_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"history_vote_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"history_vote_user_num"
)
/
10
))(
history_vote_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"one_reply_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"one_reply_user_num"
)
/
10
))(
one_reply_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"three_reply_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"three_reply_user_num"
)
/
10
))(
three_reply_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"seven_reply_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"seven_reply_user_num"
)
/
10
))(
seven_reply_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_reply_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_reply_user_num"
)
/
10
))(
fifteen_reply_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"thirty_reply_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"thirty_reply_user_num"
)
/
10
))(
thirty_reply_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"sixty_reply_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"sixty_reply_user_num"
)
/
10
))(
sixty_reply_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"ninety_reply_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"ninety_reply_user_num"
)
/
10
))(
ninety_reply_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"history_reply_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"history_reply_user_num"
)
/
10
))(
history_reply_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"one_browse_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"one_browse_user_num"
)
/
10
))(
one_browse_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"three_browse_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"three_browse_user_num"
)
/
10
))(
three_browse_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"seven_browse_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"seven_browse_user_num"
)
/
10
))(
seven_browse_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_browse_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_browse_user_num"
)
/
10
))(
fifteen_browse_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"thirty_browse_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"thirty_browse_user_num"
)
/
10
))(
thirty_browse_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"sixty_browse_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"sixty_browse_user_num"
)
/
10
))(
sixty_browse_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"ninety_browse_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"ninety_browse_user_num"
)
/
10
))(
ninety_browse_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"history_browse_user_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"history_browse_user_num"
)
/
10
))(
history_browse_user_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"one_reply_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"one_reply_num"
)
/
10
))(
one_reply_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"three_reply_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"three_reply_num"
)
/
10
))(
three_reply_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"seven_reply_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"seven_reply_num"
)
/
10
))(
seven_reply_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_reply_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_reply_num"
)
/
10
))(
fifteen_reply_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"thirty_reply_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"thirty_reply_num"
)
/
10
))(
thirty_reply_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"sixty_reply_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"sixty_reply_num"
)
/
10
))(
sixty_reply_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"ninety_reply_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"ninety_reply_num"
)
/
10
))(
ninety_reply_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"history_reply_num"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"history_reply_num"
)
/
10
))(
history_reply_num
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"one_ctr"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"one_ctr"
)
/
10
))(
one_ctr
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"three_ctr"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"three_ctr"
)
/
10
))(
three_ctr
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"seven_ctr"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"seven_ctr"
)
/
10
))(
seven_ctr
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_ctr"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_ctr"
)
/
10
))(
fifteen_ctr
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"thirty_ctr"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"thirty_ctr"
)
/
10
))(
thirty_ctr
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"sixty_ctr"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"sixty_ctr"
)
/
10
))(
sixty_ctr
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"ninety_ctr"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"ninety_ctr"
)
/
10
))(
ninety_ctr
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"history_ctr"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"history_ctr"
)
/
10
))(
history_ctr
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"one_vote_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"one_vote_pure_rate"
)
/
10
))(
one_vote_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"three_vote_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"three_vote_pure_rate"
)
/
10
))(
three_vote_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"seven_vote_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"seven_vote_pure_rate"
)
/
10
))(
seven_vote_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_vote_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_vote_pure_rate"
)
/
10
))(
fifteen_vote_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"thirty_vote_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"thirty_vote_pure_rate"
)
/
10
))(
thirty_vote_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"sixty_vote_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"sixty_vote_pure_rate"
)
/
10
))(
sixty_vote_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"ninety_vote_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"ninety_vote_pure_rate"
)
/
10
))(
ninety_vote_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"history_vote_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"history_vote_pure_rate"
)
/
10
))(
history_vote_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"one_reply_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"one_reply_pure_rate"
)
/
10
))(
one_reply_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"three_reply_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"three_reply_pure_rate"
)
/
10
))(
three_reply_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"seven_reply_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"seven_reply_pure_rate"
)
/
10
))(
seven_reply_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_reply_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"fifteen_reply_pure_rate"
)
/
10
))(
fifteen_reply_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"thirty_reply_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"thirty_reply_pure_rate"
)
/
10
))(
thirty_reply_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"sixty_reply_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"sixty_reply_pure_rate"
)
/
10
))(
sixty_reply_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"ninety_reply_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"ninety_reply_pure_rate"
)
/
10
))(
ninety_reply_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"history_reply_pure_rate"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"history_reply_pure_rate"
)
/
10
))(
history_reply_pure_rate
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"card_fd"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"card_fd"
)
/
10
))(
card_fd
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"card_sd"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"card_sd"
)
/
10
))(
card_sd
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"card_fs"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"card_fs"
)
/
10
))(
card_fs
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"card_ss"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"card_ss"
)
/
10
))(
card_ss
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"card_fp"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"card_fp"
)
/
10
))(
card_fp
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"card_sp"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"card_sp"
)
/
10
))(
card_sp
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"card_p"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"card_p"
)
/
10
))(
card_p
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"card_fd2"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"card_fd2"
)
/
10
))(
card_fd2
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"card_sd2"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"card_sd2"
)
/
10
))(
card_sd2
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"card_fs2"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"card_fs2"
)
/
10
))(
card_fs2
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"card_ss2"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"card_ss2"
)
/
10
))(
card_ss2
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"card_fp2"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"card_fp2"
)
/
10
))(
card_fp2
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"card_sp2"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"card_sp2"
)
/
10
))(
card_sp2
),
layers
.
Embedding
(
TRACTATE_DIM_DICT
.
get
(
"card_p2"
),
int
(
TRACTATE_DIM_DICT
.
get
(
"card_p2"
)
/
10
))(
card_p2
),
])
tractate_vector
=
layers
.
Dense
(
3000
,
activation
=
activations
.
relu
)(
tractate_vector
)
tractate_vector
=
layers
.
Dense
(
1000
,
activation
=
activations
.
relu
,
name
=
"tractate_embedding"
,
kernel_regularizer
=
"l2"
,
)(
tractate_vector
)
device_tractate_dot
=
tf
.
reduce_sum
(
device_vector
*
tractate_vector
,
axis
=
1
)
device_tractate_dot
=
tf
.
expand_dims
(
device_tractate_dot
,
1
)
output
=
layers
.
Dense
(
1
,
activation
=
activations
.
sigmoid
)(
device_tractate_dot
)
inputs
=
[
device_id
,
device_fd
,
device_sd
,
device_fs
,
device_ss
,
device_fp
,
device_sp
,
device_p
,
device_fd2
,
device_sd2
,
device_fs2
,
device_ss2
,
device_fp2
,
device_sp2
,
device_p2
,
card_id
,
is_pure_author
,
is_have_pure_reply
,
is_have_reply
,
content_level
,
topic_seven_click_num
,
topic_thirty_click_num
,
topic_num
,
seven_transform_num
,
thirty_transform_num
,
favor_num
,
favor_pure_num
,
vote_num
,
vote_display_num
,
reply_num
,
reply_pure_num
,
one_click_num
,
three_click_num
,
seven_click_num
,
fifteen_click_num
,
thirty_click_num
,
sixty_click_num
,
ninety_click_num
,
history_click_num
,
one_precise_exposure_num
,
three_precise_exposure_num
,
seven_precise_exposure_num
,
fifteen_precise_exposure_num
,
thirty_precise_exposure_num
,
sixty_precise_exposure_num
,
ninety_precise_exposure_num
,
history_precise_exposure_num
,
one_vote_user_num
,
three_vote_user_num
,
seven_vote_user_num
,
fifteen_vote_user_num
,
thirty_vote_user_num
,
sixty_vote_user_num
,
ninety_vote_user_num
,
history_vote_user_num
,
one_reply_user_num
,
three_reply_user_num
,
seven_reply_user_num
,
fifteen_reply_user_num
,
thirty_reply_user_num
,
sixty_reply_user_num
,
ninety_reply_user_num
,
history_reply_user_num
,
one_browse_user_num
,
three_browse_user_num
,
seven_browse_user_num
,
fifteen_browse_user_num
,
thirty_browse_user_num
,
sixty_browse_user_num
,
ninety_browse_user_num
,
history_browse_user_num
,
one_reply_num
,
three_reply_num
,
seven_reply_num
,
fifteen_reply_num
,
thirty_reply_num
,
sixty_reply_num
,
ninety_reply_num
,
history_reply_num
,
one_ctr
,
three_ctr
,
seven_ctr
,
fifteen_ctr
,
thirty_ctr
,
sixty_ctr
,
ninety_ctr
,
history_ctr
,
one_vote_pure_rate
,
three_vote_pure_rate
,
seven_vote_pure_rate
,
fifteen_vote_pure_rate
,
thirty_vote_pure_rate
,
sixty_vote_pure_rate
,
ninety_vote_pure_rate
,
history_vote_pure_rate
,
one_reply_pure_rate
,
three_reply_pure_rate
,
seven_reply_pure_rate
,
fifteen_reply_pure_rate
,
thirty_reply_pure_rate
,
sixty_reply_pure_rate
,
ninety_reply_pure_rate
,
history_reply_pure_rate
,
card_fd
,
card_sd
,
card_fs
,
card_ss
,
card_fp
,
card_sp
,
card_p
,
card_fd2
,
card_sd2
,
card_fs2
,
card_ss2
,
card_fp2
,
card_sp2
,
card_p2
]
model
=
tf
.
keras
.
Model
(
inputs
=
inputs
,
outputs
=
[
output
])
print
(
model
.
summary
())
model
.
compile
(
loss
=
losses
.
MeanSquaredError
(),
optimizer
=
optimizers
.
RMSprop
(),
metrics
=
[
metrics
.
binary_accuracy
],
)
return
model
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
df
=
device_tractae_fe
()
df
=
device_tractae_fe
()
print
(
df
.
head
(
3
),
df
.
shape
)
print
(
df
.
head
(
3
),
df
.
shape
)
y
=
df
[
"label"
]
# device_df = df[DEVICE_COLUMNS]
# tractate_df = df[TRACTATE_COLUMNS]
DEVICE_DIM_DICT
=
get_input_dim
(
df
,
DEVICE_COLUMNS
)
TRACTATE_DIM_DICT
=
get_input_dim
(
df
,
TRACTATE_COLUMNS
)
model
=
tractate_dssm_model
()
x_train
=
[]
for
i
in
DEVICE_COLUMNS
+
TRACTATE_COLUMNS
:
x_train
.
append
(
df
[
i
])
history
=
model
.
fit
(
x
=
x_train
,
y
=
y
,
batch_size
=
32
,
epochs
=
5
,
verbose
=
1
,
callbacks
=
[
tf
.
keras
.
callbacks
.
EarlyStopping
(
monitor
=
"loss"
,
patience
=
3
),
])
history_dict
=
history
.
history
print
(
history_dict
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment