Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
strategy_embedding
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
strategy_embedding
Commits
7b7ac522
Commit
7b7ac522
authored
Nov 24, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
get answer id from index
parent
00e153af
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
25 additions
and
6 deletions
+25
-6
answer_similarity.py
doc_similarity/answer_similarity.py
+25
-6
No files found.
doc_similarity/answer_similarity.py
View file @
7b7ac522
...
...
@@ -4,8 +4,8 @@ import sys
sys
.
path
.
append
(
os
.
path
.
realpath
(
"."
))
import
numpy
as
np
from
bert_serving.client
import
BertClient
from
utils.es
import
es_scan
,
get_answer_info_from_es
import
faiss
def
cos_sim
(
vector_a
,
vector_b
):
...
...
@@ -38,9 +38,28 @@ if __name__ == "__main__":
# print(cos_sim(sen1_em, sen2_em))
for
item
in
get_answer_info_from_es
([
"id"
,
"answer"
,
"content_level"
,
"desc"
]):
id
=
item
[
"_id"
]
level_dict
=
{
"6"
:
[],
"5"
:
[],
"4"
:
[],
"3.5"
:
[],
"3"
:
[]}
embedding_dict
=
{}
for
item
in
get_answer_info_from_es
([
"id"
,
"answer"
,
"content_level"
]):
id
=
int
(
item
[
"_id"
])
content
=
item
[
"_source"
][
"answer"
]
content_level
=
item
[
"_source"
][
"content_level"
]
desc
=
item
[
"_source"
][
"desc"
]
print
(
id
,
content_level
,
content
,
desc
)
content_level
=
str
(
item
[
"_source"
][
"content_level"
])
# print(id, content_level, content)
level_dict
[
content_level
]
.
append
(
id
)
embedding_dict
[
id
]
=
bc
.
encode
([
content
])
answer_ids
=
np
.
array
(
list
(
embedding_dict
.
keys
()))
.
astype
(
"int"
)
answer_embeddings
=
np
.
array
(
list
(
embedding_dict
.
values
()))
.
astype
(
"float32"
)
index
=
faiss
.
IndexFlatL2
(
answer_embeddings
.
shape
[
1
])
print
(
"trained: "
+
str
(
index
.
is_trained
))
index2
=
faiss
.
IndexIDMap
(
index
)
index2
.
add_with_ids
(
answer_embeddings
,
answer_ids
)
print
(
"trained: "
+
str
(
index2
.
is_trained
))
print
(
"total index: "
+
str
(
index2
.
ntotal
))
for
i
in
[
59753
,
54792
,
42643
]:
D
,
I
=
index2
.
search
(
np
.
array
(
answer_embeddings
[
i
])
.
astype
(
"float32"
))
res
=
I
.
tolist
()
print
(
res
,
"
\n
"
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment