Commit 865d27eb authored by 赵威's avatar 赵威

get data

parent 246497ff
...@@ -2,12 +2,17 @@ import os ...@@ -2,12 +2,17 @@ import os
import time import time
from gensim.models import word2vec from gensim.models import word2vec
from gm_rpcd.all import bind
base_dir = os.getcwd() base_dir = os.getcwd()
print("base_dir: " + base_dir) print("base_dir: " + base_dir)
model_dir = os.path.join(base_dir, "_models") model_dir = os.path.join(base_dir, "_models")
data_dir = os.path.join(base_dir, "_data") data_dir = os.path.join(base_dir, "_data")
model_output_name = "w2v_model"
model_path = os.path.join(model_dir, model_output_name)
WORD2VEC_MODEL = word2vec.Word2Vec.load(model_path)
class W2vSentences: class W2vSentences:
def __init__(self, f_name): def __init__(self, f_name):
...@@ -29,17 +34,17 @@ def w2v_train(f_name, model_output_name): ...@@ -29,17 +34,17 @@ def w2v_train(f_name, model_output_name):
w2v_model.save(model_path) w2v_model.save(model_path)
@bind("strategy_embedding/word_vector/word_similarity")
def word_similarity():
pass
if __name__ == "__main__": if __name__ == "__main__":
begin_time = time.time() begin_time = time.time()
model_output_name = "w2v_model"
# w2v_train("dispose_problem.txt", model_output_name) # w2v_train("dispose_problem.txt", model_output_name)
model_path = os.path.join(model_dir, model_output_name)
w2v_model = word2vec.Word2Vec.load(model_path)
for i in ["双眼皮", "隆鼻"]: for i in ["双眼皮", "隆鼻"]:
print(w2v_model.wv.most_similar(i)) print(WORD2VEC_MODEL.wv.most_similar(i))
print("total cost: {:.2f}mins".format((time.time() - begin_time) / 60)) print("total cost: {:.2f}mins".format((time.time() - begin_time) / 60))
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment