Commit b767b8ac authored by 赵威's avatar 赵威

add sub projects

parent 41e55b32
...@@ -3,7 +3,7 @@ import os ...@@ -3,7 +3,7 @@ import os
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import tensorflow as tf import tensorflow as tf
from tensorflow.keras import activations, layers, losses, metrics, optimizers from tensorflow.keras import (activations, callbacks, layers, losses, metrics, optimizers)
base_dir = os.getcwd() base_dir = os.getcwd()
# base_dir = "/Users/offic/work/GM/strategy_embedding/" # TODO remove # base_dir = "/Users/offic/work/GM/strategy_embedding/" # TODO remove
...@@ -524,8 +524,6 @@ def tractate_dssm_model(): ...@@ -524,8 +524,6 @@ def tractate_dssm_model():
device_tractate_dot = tf.reduce_sum(device_vector * tractate_vector, axis=1) device_tractate_dot = tf.reduce_sum(device_vector * tractate_vector, axis=1)
device_tractate_dot = tf.expand_dims(device_tractate_dot, 1) device_tractate_dot = tf.expand_dims(device_tractate_dot, 1)
output = layers.Dense(1, activation=activations.sigmoid)(device_tractate_dot)
inputs = [ inputs = [
device_id, device_fd, device_sd, device_fs, device_ss, device_fp, device_sp, device_p, device_fd2, device_sd2, device_fs2, device_id, device_fd, device_sd, device_fs, device_ss, device_fp, device_sp, device_p, device_fd2, device_sd2, device_fs2,
device_ss2, device_fp2, device_sp2, device_p2, card_id, is_pure_author, is_have_pure_reply, is_have_reply, content_level, device_ss2, device_fp2, device_sp2, device_p2, card_id, is_pure_author, is_have_pure_reply, is_have_reply, content_level,
...@@ -546,6 +544,7 @@ def tractate_dssm_model(): ...@@ -546,6 +544,7 @@ def tractate_dssm_model():
thirty_reply_pure_rate, sixty_reply_pure_rate, ninety_reply_pure_rate, history_reply_pure_rate, card_fd, card_sd, card_fs, thirty_reply_pure_rate, sixty_reply_pure_rate, ninety_reply_pure_rate, history_reply_pure_rate, card_fd, card_sd, card_fs,
card_ss, card_fp, card_sp, card_p, card_fd2, card_sd2, card_fs2, card_ss2, card_fp2, card_sp2, card_p2 card_ss, card_fp, card_sp, card_p, card_fd2, card_sd2, card_fs2, card_ss2, card_fp2, card_sp2, card_p2
] ]
output = layers.Dense(1, activation=activations.sigmoid)(device_tractate_dot)
model = tf.keras.Model(inputs=inputs, outputs=[output]) model = tf.keras.Model(inputs=inputs, outputs=[output])
print(model.summary()) print(model.summary())
...@@ -576,12 +575,10 @@ if __name__ == "__main__": ...@@ -576,12 +575,10 @@ if __name__ == "__main__":
history = model.fit(x=x_train, history = model.fit(x=x_train,
y=y, y=y,
batch_size=32, batch_size=320,
epochs=5, epochs=5,
verbose=1, verbose=1,
callbacks=[ callbacks=[callbacks.EarlyStopping(monitor="loss", patience=10)])
tf.keras.callbacks.EarlyStopping(monitor="loss", patience=3),
])
history_dict = history.history history_dict = history.history
print(history_dict) print(history_dict)
from django.contrib import admin
# Register your models here.
from django.apps import AppConfig
class PersonasVectorConfig(AppConfig):
name = 'personas_vector'
from django.db import models
# Create your models here.
from django.test import TestCase
# Create your tests here.
from django.shortcuts import render
# Create your views here.
...@@ -30,5 +30,6 @@ pytispark==2.0 ...@@ -30,5 +30,6 @@ pytispark==2.0
tensorflow==2.3.1 tensorflow==2.3.1
keras==2.4.3 keras==2.4.3
protobuf==3.13.0
ipython ipython
...@@ -38,7 +38,8 @@ INSTALLED_APPS = [ ...@@ -38,7 +38,8 @@ INSTALLED_APPS = [
"django_extensions", "django_extensions",
"face_similarity", "face_similarity",
"word_vector", "word_vector",
"dssm" "dssm",
"personas_vector",
"utils", "utils",
] ]
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment