Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
M
meta_base_code
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
宋柯
meta_base_code
Commits
87168824
Commit
87168824
authored
Sep 10, 2020
by
litaolemo
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update
parent
42a0f9ef
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
681 additions
and
0 deletions
+681
-0
__init__.py
utils/__init__.py
+6
-0
func_get_pv_card_id.py
utils/func_get_pv_card_id.py
+204
-0
portary_div_exposure.py
utils/portary_div_exposure.py
+471
-0
No files found.
utils/__init__.py
0 → 100644
View file @
87168824
# -*- coding:UTF-8 -*-
# @Time : 2020/9/9 17:15
# @File : __init__.py.py
# @email : litao@igengmei.com
# @author : litao
\ No newline at end of file
utils/func_get_pv_card_id.py
0 → 100644
View file @
87168824
# -*- coding:UTF-8 -*-
# @Time : 2020/9/9 17:16
# @File : func_get_pv_card_id.py
# @email : litao@igengmei.com
# @author : litao
import
hashlib
import
json
import
pymysql
import
xlwt
,
datetime
import
redis
# from pyhive import hive
from
maintenance.func_send_email_with_file
import
send_file_email
from
typing
import
Dict
,
List
from
elasticsearch_7
import
Elasticsearch
from
elasticsearch_7.helpers
import
scan
import
sys
import
time
from
pyspark
import
SparkConf
from
pyspark.sql
import
SparkSession
,
DataFrame
# from pyspark.sql.functions import lit
# import pytispark.pytispark as pti
def
get_card_id
():
startTime
=
time
.
time
()
sparkConf
=
SparkConf
()
sparkConf
.
set
(
"spark.sql.crossJoin.enabled"
,
True
)
sparkConf
.
set
(
"spark.debug.maxToStringFields"
,
"100"
)
sparkConf
.
set
(
"spark.tispark.plan.allow_index_double_read"
,
False
)
sparkConf
.
set
(
"spark.tispark.plan.allow_index_read"
,
True
)
sparkConf
.
set
(
"spark.hive.mapred.supports.subdirectories"
,
True
)
sparkConf
.
set
(
"spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive"
,
True
)
sparkConf
.
set
(
"spark.serializer"
,
"org.apache.spark.serializer.KryoSerializer"
)
sparkConf
.
set
(
"mapreduce.output.fileoutputformat.compress"
,
False
)
sparkConf
.
set
(
"mapreduce.map.output.compress"
,
False
)
sparkConf
.
set
(
"prod.gold.jdbcuri"
,
"jdbc:mysql://172.16.30.136/doris_prod?user=doris&password=o5gbA27hXHHm&rewriteBatchedStatements=true"
)
sparkConf
.
set
(
"prod.mimas.jdbcuri"
,
"jdbc:mysql://172.16.30.138/mimas_prod?user=mimas&password=GJL3UJe1Ck9ggL6aKnZCq4cRvM&rewriteBatchedStatements=true"
)
sparkConf
.
set
(
"prod.gaia.jdbcuri"
,
"jdbc:mysql://172.16.30.143/zhengxing?user=work&password=BJQaT9VzDcuPBqkd&rewriteBatchedStatements=true"
)
sparkConf
.
set
(
"prod.tidb.jdbcuri"
,
"jdbc:mysql://172.16.40.158:4000/eagle?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true"
)
sparkConf
.
set
(
"prod.jerry.jdbcuri"
,
"jdbc:mysql://172.16.40.158:4000/jerry_prod?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true"
)
sparkConf
.
set
(
"prod.tispark.pd.addresses"
,
"172.16.40.158:2379"
)
sparkConf
.
set
(
"prod.tispark.pd.addresses"
,
"172.16.40.170:4000"
)
sparkConf
.
set
(
"prod.tidb.database"
,
"jerry_prod"
)
spark
=
(
SparkSession
.
builder
.
config
(
conf
=
sparkConf
)
.
config
(
"spark.sql.extensions"
,
"org.apache.spark.sql.TiExtensions"
)
.
config
(
"spark.tispark.pd.addresses"
,
"172.16.40.170:2379"
)
.
appName
(
"LR PYSPARK TEST"
)
.
enableHiveSupport
()
.
getOrCreate
())
spark
.
sql
(
"ADD JAR hdfs:///user/hive/share/lib/udf/brickhouse-0.7.1-SNAPSHOT.jar"
)
spark
.
sql
(
"ADD JAR hdfs:///user/hive/share/lib/udf/hive-udf-1.0-SNAPSHOT.jar"
)
spark
.
sql
(
"CREATE TEMPORARY FUNCTION json_map AS 'brickhouse.udf.json.JsonMapUDF'"
)
spark
.
sql
(
"CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJsonFormatCheck'"
)
spark
.
sql
(
"CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'"
)
task_list
=
[]
task_days
=
2
for
t
in
range
(
1
,
task_days
):
day_num
=
0
-
t
now
=
(
datetime
.
datetime
.
now
()
+
datetime
.
timedelta
(
days
=
day_num
))
last_30_day_str
=
(
now
+
datetime
.
timedelta
(
days
=-
30
))
.
strftime
(
"
%
Y
%
m
%
d"
)
today_str
=
now
.
strftime
(
"
%
Y
%
m
%
d"
)
yesterday_str
=
(
now
+
datetime
.
timedelta
(
days
=-
1
))
.
strftime
(
"
%
Y
%
m
%
d"
)
one_week_age_str
=
(
now
+
datetime
.
timedelta
(
days
=-
3
))
.
strftime
(
"
%
Y
%
m
%
d"
)
sql
=
r"""
SELECT * FROM
(--精准曝光,卡片id和session_id去重
SELECT partition_date,
card_content_type,
cl_id,
recommend_type,
card_id
FROM
(
SELECT partition_date,
cl_id,
case when card_content_type in ('qa','answer') then 'qa' else card_content_type end as card_content_type,
CASE when transaction_type in ('fmctr') then 'fmctr'
WHEN transaction_type like '
%
ctr' THEN 'ctr预估'
WHEN transaction_type like '
%
cvr' THEN 'cvr预估'
WHEN transaction_type in ('-1','smr') THEN 'smr'
when transaction_type in ('pgc','hotspot') then '热点卡片'
when transaction_type in ('newdata') then '保量卡片'
when transaction_type in ('hotspot_feed') then 'hotspot_feed'
END AS recommend_type,
card_id,
app_session_id
from online.ml_community_precise_exposure_detail
WHERE partition_date='{partition_day}'
AND action in ('page_precise_exposure','home_choiceness_card_exposure') --7745版本action改为page_precise_exposure
AND is_exposure = '1' ----精准曝光
AND page_name ='home'
AND tab_name = '精选'
AND (transaction_type in ('-1','smr','hotspot','pgc','newdata','hotspot_feed')
or transaction_type like '
%
ctr' or transaction_type like '
%
cvr')
AND card_content_type in ('qa','diary','user_post','answer')
group by partition_date,
case when card_content_type in ('qa','answer') then 'qa' else card_content_type end,
cl_id,
CASE when transaction_type in ('fmctr') then 'fmctr'
WHEN transaction_type like '
%
ctr' THEN 'ctr预估'
WHEN transaction_type like '
%
cvr' THEN 'cvr预估'
WHEN transaction_type in ('-1','smr') THEN 'smr'
when transaction_type in ('pgc','hotspot') then '热点卡片'
when transaction_type in ('newdata') then '保量卡片'
when transaction_type in ('hotspot_feed') then 'hotspot_feed' END,
card_id,
app_session_id
)a
group by partition_date,card_content_type,cl_id,recommend_type,card_id
)t2
LEFT JOIN
(
select distinct device_id
from ml.ml_d_ct_dv_devicespam_d --去除机构刷单设备,即作弊设备(浏览和曝光事件去除)
WHERE partition_day='{partition_day}'
union all
select distinct device_id
from dim.dim_device_user_staff --去除内网用户
)spam_pv
on spam_pv.device_id=t2.cl_id
LEFT JOIN
(
SELECT partition_date,device_id
FROM
(--找出user_id当天活跃的第一个设备id
SELECT user_id,partition_date,
if(size(device_list) > 0, device_list [ 0 ], '') AS device_id
FROM online.ml_user_updates
WHERE partition_date='{partition_day}'
)t1
JOIN
( --医生账号
SELECT distinct user_id
FROM online.tl_hdfs_doctor_view
WHERE partition_date = '{partition_day}'
--马甲账号/模特用户
UNION ALL
SELECT user_id
FROM ml.ml_c_ct_ui_user_dimen_d
WHERE partition_day = '{partition_day}'
AND (is_puppet = 'true' or is_classifyuser = 'true')
UNION ALL
--公司内网覆盖用户
select distinct user_id
from dim.dim_device_user_staff
UNION ALL
--登陆过医生设备
SELECT distinct t1.user_id
FROM
(
SELECT user_id, v.device_id as device_id
FROM online.ml_user_history_detail
LATERAL VIEW EXPLODE(device_history_list) v AS device_id
WHERE partition_date = '{partition_day}'
) t1
JOIN
(
SELECT device_id
FROM online.ml_device_history_detail
WHERE partition_date = '{partition_day}'
AND is_login_doctor = '1'
) t2
ON t1.device_id = t2.device_id
)t2
on t1.user_id=t2.user_id
group by partition_date,device_id
)dev
on t2.partition_date=dev.partition_date and t2.cl_id=dev.device_id
WHERE spam_pv.device_id IS NULL
and dev.device_id is null
"""
.
format
(
partition_day
=
yesterday_str
)
device_df
=
spark
.
sql
(
sql
)
device_df
.
show
(
1
,
False
)
sql_res
=
device_df
.
collect
()
res_dict
=
{
"diary"
:
[],
"user_post"
:
[],
"qa"
:
[]
}
for
res
in
sql_res
:
print
(
res
)
card_content_type
=
res
.
card_content_type
card_id
=
res
.
card_id
if
card_content_type
in
res_dict
:
res_dict
[
card_content_type
]
.
append
(
card_id
)
return
res_dict
utils/portary_div_exposure.py
0 → 100644
View file @
87168824
# -*- coding:UTF-8 -*-
# @Time : 2020/9/9 10:07
# @File : portary_div_exposure.py
# @email : litao@igengmei.com
# @author : litao
import
json
import
traceback
import
redis
import
pymysql
from
elasticsearch
import
Elasticsearch
from
meta_base_code.utils.func_get_pv_card_id
import
get_card_id
redis_client
=
redis
.
StrictRedis
.
from_url
(
"redis://:ReDis!GmTx*0aN6@172.16.40.133:6379"
)
redis_client2
=
redis
.
StrictRedis
.
from_url
(
"redis://:ReDis!GmTx*0aN9@172.16.40.173:6379"
)
redis_client3
=
redis
.
StrictRedis
.
from_url
(
"redis://:ReDis!GmTx*0aN12@172.16.40.164:6379"
)
redis_client4
=
redis
.
StrictRedis
.
from_url
(
"redis://:XfkMCCdWDIU
%
ls$h@172.16.50.145:6379"
)
es
=
Elasticsearch
([
{
'host'
:
'172.16.31.17'
,
'port'
:
9200
,
},
{
'host'
:
'172.16.31.11'
,
'port'
:
9200
,
}])
def
user_portrait_scan_info
():
try
:
round
=
0
all_count
=
0
empty_count
=
0
just_projects_count
=
0
keys
=
"doris:user_portrait:tag3:device_id:*"
cur
,
results
=
redis_client2
.
scan
(
0
,
keys
,
3000
)
while
cur
!=
0
:
round
+=
1
print
(
"round: "
+
str
(
round
))
cur
,
results
=
redis_client2
.
scan
(
cur
,
keys
,
3000
)
for
key
in
results
:
key
=
str
(
key
,
"utf-8"
)
device_id
=
key
.
split
(
":"
)[
-
1
]
all_count
+=
1
# if user_portrait_is_empty(device_id):
# print(device_id)
# empty_count += 1
# if user_portrait_just_projects(device_id):
# print(device_id)
# just_projects_count += 1
# user_portrait_get_empty_candidates(device_id)
yield
get_user_portrait_tag3_from_redis
(
device_id
)
print
(
"all count: "
+
str
(
all_count
))
print
(
"empty portrait: "
+
str
(
empty_count
))
print
(
"just projects portrait: "
+
str
(
just_projects_count
))
except
Exception
as
e
:
print
(
e
)
def
get_user_portrait_tag3_redis_key
(
device_id
):
return
"doris:user_portrait:tag3:device_id:"
+
str
(
device_id
)
def
get_user_portrait_tag3_from_redis
(
device_id
,
limit_score
=
0
):
def
items_gt_score
(
d
):
new_d
=
dict
(
sorted
(
d
.
items
(),
key
=
lambda
x
:
x
[
1
],
reverse
=
True
))
res
=
{
tag
:
float
(
score
)
for
tag
,
score
in
new_d
.
items
()
if
float
(
score
)
>=
limit_score
}
return
list
(
res
.
keys
())
portrait_key
=
get_user_portrait_tag3_redis_key
(
device_id
)
if
redis_client2
.
exists
(
portrait_key
):
user_portrait
=
json
.
loads
(
redis_client2
.
get
(
portrait_key
))
first_demands
=
items_gt_score
(
user_portrait
.
get
(
"first_demands"
,
{}))
# 一级诉求
second_demands
=
items_gt_score
(
user_portrait
.
get
(
"second_demands"
,
{}))
# 二级诉求
first_solutions
=
items_gt_score
(
user_portrait
.
get
(
"first_solutions"
,
{}))
# 一级方式
second_solutions
=
items_gt_score
(
user_portrait
.
get
(
"second_solutions"
,
{}))
# 二级方式
first_positions
=
items_gt_score
(
user_portrait
.
get
(
"first_positions"
,
{}))
# 一级部位
second_positions
=
items_gt_score
(
user_portrait
.
get
(
"second_positions"
,
{}))
projects
=
items_gt_score
(
user_portrait
.
get
(
"projects"
,
{}))
# 项目
anecdote_tags
=
items_gt_score
(
user_portrait
.
get
(
"anecdote_tags"
,
{}))
# 八卦
return
{
"first_demands"
:
first_demands
,
"second_demands"
:
second_demands
,
"first_solutions"
:
first_solutions
,
"second_solutions"
:
second_solutions
,
"first_positions"
:
first_positions
,
"second_positions"
:
second_positions
,
"projects"
:
projects
,
"anecdote_tags"
:
anecdote_tags
}
return
{}
def
get_channel_tags_info
():
"""
tag_ids: [416, 432, 421, 423, 275, 582]
return:
"""
sql
=
"SELECT name, tag_type from api_tag_3_0"
results
=
get_data_by_mysql
(
"172.16.30.141"
,
3306
,
"zx_str"
,
"ZXueX58pStrage"
,
"zhengxing"
,
sql
)
first_demands_lst
=
[]
second_demands_lst
=
[]
first_solutions_lst
=
[]
second_solutions_lst
=
[]
first_positions_lst
=
[]
second_positions_lst
=
[]
projects_lst
=
[]
# channels_lst = []
for
i
in
results
:
name
=
i
.
get
(
"name"
,
""
)
tag_id
=
i
.
get
(
"tag_type"
,
-
1
)
if
tag_id
==
1
:
projects_lst
.
append
(
name
)
elif
tag_id
==
21
:
first_positions_lst
.
append
(
name
)
elif
tag_id
==
22
:
second_positions_lst
.
append
(
name
)
elif
tag_id
==
19
:
first_demands_lst
.
append
(
name
)
elif
tag_id
==
20
:
second_demands_lst
.
append
(
name
)
elif
tag_id
==
18
:
first_solutions_lst
.
append
(
name
)
elif
tag_id
==
16
:
second_solutions_lst
.
append
(
name
)
# elif tag_id == 29:
# channels_lst.append(name)
return
{
"first_demands"
:
first_demands_lst
,
"second_demands"
:
second_demands_lst
,
"first_solutions"
:
first_solutions_lst
,
"second_solutions"
:
second_solutions_lst
,
"first_positions"
:
first_positions_lst
,
"second_positions"
:
second_positions_lst
,
"projects"
:
projects_lst
,
# "channels": channels_lst
}
def
get_device_num_from_es
(
word
):
results
=
es
.
search
(
index
=
'gm-dbmw-device'
,
doc_type
=
'doc'
,
timeout
=
'10s'
,
size
=
0
,
body
=
{
"query"
:
{
"bool"
:
{
"should"
:
[
{
"nested"
:
{
"path"
:
"first_demands"
,
"query"
:
{
"bool"
:
{
"must"
:
[
{
"terms"
:
{
"first_demands.name"
:
[
word
]
}
}
]
}
}
}
},
{
"nested"
:
{
"path"
:
"second_demands"
,
"query"
:
{
"bool"
:
{
"must"
:
[
{
"terms"
:
{
"second_demands.name"
:
[
word
]
}
}
]
}
}
}
},
{
"nested"
:
{
"path"
:
"first_solutions"
,
"query"
:
{
"bool"
:
{
"must"
:
[
{
"terms"
:
{
"first_solutions.name"
:
[
word
]
}
}
]
}
}
}
},
{
"nested"
:
{
"path"
:
"second_solutions"
,
"query"
:
{
"bool"
:
{
"must"
:
[
{
"terms"
:
{
"second_solutions.name"
:
[
word
]
}
}
]
}
}
}
},
{
"nested"
:
{
"path"
:
"first_positions"
,
"query"
:
{
"bool"
:
{
"must"
:
[
{
"terms"
:
{
"first_positions.name"
:
[
word
]
}
}
]
}
}
}
},
{
"nested"
:
{
"path"
:
"second_positions"
,
"query"
:
{
"bool"
:
{
"must"
:
[
{
"terms"
:
{
"second_positions.name"
:
[
word
]
}
}
]
}
}
}
},
{
"nested"
:
{
"path"
:
"projects"
,
"query"
:
{
"bool"
:
{
"must"
:
[
{
"terms"
:
{
"projects.name"
:
[
word
]
}
}
]
}
}
}
}
],
"minimum_should_match"
:
1
}
}
}
)
tractate_content_num
=
results
[
"hits"
][
"total"
]
return
tractate_content_num
def
get_es_article_num
(
tag_dict
):
# {tag_name:(answer_content_num, tractate_content_num, diary_content_num, total_num)}
article_dict
=
{
"first_demands"
:
[],
"second_demands"
:
[],
"first_solutions"
:
[],
"second_solutions"
:
[],
"first_positions"
:
[],
"second_positions"
:
[],
"projects"
:
[],
}
for
tag_type
in
tag_dict
:
for
tag_name
in
tag_dict
[
tag_type
]:
body
=
{
"query"
:
{
"bool"
:
{
"minimum_should_match"
:
1
,
"should"
:
[],
"must"
:
[
{
"term"
:
{
"is_online"
:
True
}
},
{
"terms"
:
{
"content_level"
:
[
6
,
5
,
4
,
3.5
,
3
]
}
},
{
"range"
:
{
"content_length"
:
{
"gte"
:
30
}
}
}],
}
},
}
body
[
"query"
][
"bool"
][
"must"
]
.
append
({
"term"
:
{
tag_type
:
tag_name
}})
results
=
es
.
search
(
index
=
'gm-dbmw-answer-read'
,
doc_type
=
'answer'
,
timeout
=
'10s'
,
size
=
0
,
body
=
body
)
answer_content_num
=
results
[
"hits"
][
"total"
]
body
=
{
"query"
:
{
"bool"
:
{
"minimum_should_match"
:
1
,
"should"
:
[],
"must"
:
[{
"term"
:
{
"is_online"
:
True
}},
{
"terms"
:
{
"content_level"
:
[
6
,
5
,
4
,
3.5
,
3
]}}
]
}
}
}
body
[
"query"
][
"bool"
][
"must"
]
.
append
({
"term"
:
{
tag_type
:
tag_name
}})
# tractate
results
=
es
.
search
(
index
=
'gm-dbmw-tractate-read'
,
doc_type
=
'tractate'
,
timeout
=
'10s'
,
size
=
0
,
body
=
body
)
tractate_content_num
=
results
[
"hits"
][
"total"
]
body
=
{
"query"
:
{
"bool"
:
{
"minimum_should_match"
:
1
,
"should"
:
[],
"must"
:
[{
"term"
:
{
"is_online"
:
True
}},
{
"term"
:
{
"has_cover"
:
True
}
},
{
"term"
:
{
"is_sink"
:
False
}
},
{
"term"
:
{
"has_after_cover"
:
True
}
},
{
"term"
:
{
"has_before_cover"
:
True
}
},
{
"range"
:
{
"content_level"
:
{
"gte"
:
"3"
}}},
{
"term"
:
{
"content_simi_bol_show"
:
0
}
}
]
}
},
}
body
[
"query"
][
"bool"
][
"must"
]
.
append
({
"term"
:
{
tag_type
:
tag_name
}})
###diary 日记
results
=
es
.
search
(
index
=
'gm-dbmw-diary-read'
,
doc_type
=
'diary'
,
timeout
=
'10s'
,
size
=
0
,
body
=
body
)
diary_content_num
=
results
[
"hits"
][
"total"
]
total_num
=
answer_content_num
+
tractate_content_num
+
diary_content_num
data_dic
=
{
tag_name
:
(
answer_content_num
,
tractate_content_num
,
diary_content_num
,
total_num
)}
print
(
data_dic
)
article_dict
[
tag_type
]
.
append
(
data_dic
)
return
article_dict
def
get_data_by_mysql
(
host
,
port
,
user
,
passwd
,
db
,
sql
):
try
:
db
=
pymysql
.
connect
(
host
=
host
,
port
=
port
,
user
=
user
,
passwd
=
passwd
,
db
=
db
,
cursorclass
=
pymysql
.
cursors
.
DictCursor
)
cursor
=
db
.
cursor
()
cursor
.
execute
(
sql
)
results
=
cursor
.
fetchall
()
db
.
close
()
return
results
except
:
print
(
"error2_user_portrait"
,
traceback
.
format_exc
())
return
traceback
.
format_exc
()
def
from_id_get_tag
(
card_id_dict
):
index
=
""
doc_type
=
""
query_count
=
{}
for
card_type
in
card_id_dict
:
if
card_type
==
"diary"
:
index
=
'gm-dbmw-diary-read'
doc_type
=
'diary'
elif
card_type
==
"qa"
:
index
=
'gm-dbmw-answer-read'
doc_type
=
'answer'
elif
card_type
==
"user_post"
:
index
=
'gm-dbmw-tractate-read'
doc_type
=
'tractate'
for
card_id
in
card_id_dict
[
card_type
]:
res
=
es
.
get_source
(
index
,
card_id
,
doc_type
=
doc_type
)
print
(
res
)
first_demands
=
res
.
get
(
"first_demands"
)
second_demands
=
res
.
get
(
"second_demands"
)
first_solutions
=
res
.
get
(
"first_solutions"
)
second_solutions
=
res
.
get
(
"second_solutions"
)
first_positions
=
res
.
get
(
"first_positions"
)
second_positions
=
res
.
get
(
"second_positions"
)
projects
=
res
.
get
(
"projects"
)
word_count_list
=
first_demands
+
second_demands
+
first_solutions
+
second_solutions
+
first_positions
+
second_positions
+
projects
for
word
in
word_count_list
:
if
word
in
query_count
:
query_count
[
word
]
+=
1
else
:
query_count
[
word
]
=
0
return
query_count
def
parse_data
():
demands_num
=
{}
# 获取全部标签
all_tags
=
get_channel_tags_info
()
print
(
all_tags
)
# 获取标签对应的日记帖子回答数
article_num_dict
=
get_es_article_num
(
all_tags
)
# 获取曝光的id
card_id_dict
=
get_card_id
()
# 获取曝光id对应的标签
word_count_exposure
=
from_id_get_tag
(
card_id_dict
)
if
__name__
==
"__main__"
:
parse_data
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment