Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
M
meta_base_code
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
宋柯
meta_base_code
Commits
c6d34498
Commit
c6d34498
authored
Nov 18, 2020
by
litaolemo
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update
parent
f513e2e8
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
417 additions
and
203 deletions
+417
-203
daily_search_word_count.py
task/daily_search_word_count.py
+1
-1
daily_search_word_count_fix.py
task/daily_search_word_count_fix.py
+305
-0
recommend_strategy_fix.py
task/recommend_strategy_fix.py
+6
-6
spark_test.py
task/spark_test.py
+0
-6
每日搜索词.sql
task/每日搜索词.sql
+105
-190
No files found.
task/daily_search_word_count.py
View file @
c6d34498
...
...
@@ -65,7 +65,7 @@ spark.sql("CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDF
# huidu_device_id_df = spark.sql(huidu_device_id_sql)
# huidu_device_id_df.createOrReplaceTempView("dev_view")
task_list
=
[]
task_days
=
80
task_days
=
3
for
t
in
range
(
0
,
task_days
):
day_num
=
0
-
t
...
...
task/daily_search_word_count_fix.py
0 → 100644
View file @
c6d34498
# -*- coding:UTF-8 -*-
# @Time : 2020/11/18 14:05
# @File : daily_search_word_count_fix.py
# @email : litao@igengmei.com
# @author : litao
# -*- coding:UTF-8 -*-
# @Time : 2020/11/13 11:08
# @File : daily_search_word_count.py
# @email : litao@igengmei.com
# @author : litao
# coding=utf-8
import
hashlib
import
time
from
pyspark
import
SparkConf
from
pyspark.sql
import
SparkSession
,
DataFrame
import
pymysql
# from elasticsearch import Elasticsearch
import
datetime
# from maintenance.func_send_email_with_file import send_file_email
# import zipfile
# es = Elasticsearch([
# {
# 'host': '172.16.31.17',
# 'port': 9200,
# }, {
# 'host': '172.16.31.11',
# 'port': 9200,
# }])
startTime
=
time
.
time
()
sparkConf
=
SparkConf
()
sparkConf
.
set
(
"spark.sql.crossJoin.enabled"
,
True
)
sparkConf
.
set
(
"spark.debug.maxToStringFields"
,
"100"
)
sparkConf
.
set
(
"spark.tispark.plan.allow_index_double_read"
,
False
)
sparkConf
.
set
(
"spark.tispark.plan.allow_index_read"
,
True
)
sparkConf
.
set
(
"spark.hive.mapred.supports.subdirectories"
,
True
)
sparkConf
.
set
(
"spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive"
,
True
)
sparkConf
.
set
(
"spark.serializer"
,
"org.apache.spark.serializer.KryoSerializer"
)
sparkConf
.
set
(
"mapreduce.output.fileoutputformat.compress"
,
False
)
sparkConf
.
set
(
"mapreduce.map.output.compress"
,
False
)
sparkConf
.
set
(
"prod.gold.jdbcuri"
,
"jdbc:mysql://172.16.30.136/doris_prod?user=doris&password=o5gbA27hXHHm&rewriteBatchedStatements=true"
)
sparkConf
.
set
(
"prod.mimas.jdbcuri"
,
"jdbc:mysql://172.16.30.138/mimas_prod?user=mimas&password=GJL3UJe1Ck9ggL6aKnZCq4cRvM&rewriteBatchedStatements=true"
)
sparkConf
.
set
(
"prod.gaia.jdbcuri"
,
"jdbc:mysql://172.16.30.143/zhengxing?user=work&password=BJQaT9VzDcuPBqkd&rewriteBatchedStatements=true"
)
sparkConf
.
set
(
"prod.tidb.jdbcuri"
,
"jdbc:mysql://172.16.40.158:4000/eagle?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true"
)
sparkConf
.
set
(
"prod.jerry.jdbcuri"
,
"jdbc:mysql://172.16.40.158:4000/jerry_prod?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true"
)
sparkConf
.
set
(
"prod.tispark.pd.addresses"
,
"172.16.40.158:2379"
)
sparkConf
.
set
(
"prod.tispark.pd.addresses"
,
"172.16.40.170:4000"
)
sparkConf
.
set
(
"prod.tidb.database"
,
"jerry_prod"
)
sparkConf
.
setAppName
(
"test"
)
spark
=
(
SparkSession
.
builder
.
config
(
conf
=
sparkConf
)
.
config
(
"spark.sql.extensions"
,
"org.apache.spark.sql.TiExtensions"
)
.
config
(
"spark.tispark.pd.addresses"
,
"172.16.40.170:2379"
)
.
enableHiveSupport
()
.
getOrCreate
())
spark
.
sql
(
"ADD JAR hdfs:///user/hive/share/lib/udf/brickhouse-0.7.1-SNAPSHOT.jar"
)
spark
.
sql
(
"ADD JAR hdfs:///user/hive/share/lib/udf/hive-udf-1.0-SNAPSHOT.jar"
)
spark
.
sql
(
"CREATE TEMPORARY FUNCTION json_map AS 'brickhouse.udf.json.JsonMapUDF'"
)
spark
.
sql
(
"CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJsonFormatCheck'"
)
spark
.
sql
(
"CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'"
)
# print(huidu_device_id_sql)
# huidu_device_id_df = spark.sql(huidu_device_id_sql)
# huidu_device_id_df.createOrReplaceTempView("dev_view")
task_list
=
[]
task_days
=
80
for
t
in
range
(
0
,
task_days
):
day_num
=
0
-
t
now
=
(
datetime
.
datetime
.
now
()
+
datetime
.
timedelta
(
days
=
day_num
))
last_30_day_str
=
(
now
+
datetime
.
timedelta
(
days
=-
30
))
.
strftime
(
"
%
Y
%
m
%
d"
)
today_str
=
now
.
strftime
(
"
%
Y
%
m
%
d"
)
yesterday_str
=
(
now
+
datetime
.
timedelta
(
days
=-
1
))
.
strftime
(
"
%
Y
%
m
%
d"
)
one_week_age_str
=
(
now
+
datetime
.
timedelta
(
days
=-
7
))
.
strftime
(
"
%
Y
%
m
%
d"
)
sql_search_ctr
=
r"""
SELECT query,
partition_date,
all_search_uv as all_search_uv, --全部搜索uv
all_search_pv as all_search_pv --全部搜索pv
FROM (
--搜索pvuv
SELECT query
, count(click.cl_id) as all_search_pv
, count(distinct click.cl_id) as all_search_uv,
partition_date
FROM (
SELECT cl_id,
partition_date,
action,
params['page_name'] as page_name,
params['input_type'] as input_type,
app_version,
params['query'] as query
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >= '{start_date}'
AND partition_date < '{end_date}'
AND ((action = 'do_search' AND params['input_type'] <> 'everyone_watch') or
action = 'search_result_click_search')
UNION all
SELECT cl_id,
partition_date,
action,
params['page_name'] as page_name,
params['input_type'] as input_type,
app_version,
params['query'] as query
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >= '{start_date}'
AND partition_date < '{end_date}'
AND action = 'do_search'
and params['input_type'] = 'everyone_watch'
and params['tab'] = '精选'
and page_name = 'home'
AND params['query'] not in ('AI测颜值', 'AI测肤质') --这两个词不跳转搜索结果页
union all
SELECT cl_id,
partition_date,
action,
'search_home' as page_name,
'' as input_type,
app_version,
params['query'] as query
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >= '{start_date}'
AND partition_date < '{end_date}'
AND action = 'on_click_card'
AND params['page_name'] = 'search_home'
union all
SELECT cl_id,
partition_date,
action,
'home' as page_name,
'首页-猜你喜欢' as input_type,
app_version,
params['card_name'] as query
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >= '{start_date}'
AND partition_date < '{end_date}'
AND action = 'on_click_card'
AND params['in_page_pos'] = '猜你喜欢'
--AND params['tab_name']='精选'
AND params['card_type'] = 'search_word'
AND params['card_name'] not in ('AI测颜值', 'AI测肤质') --这两个词不跳转搜索结果页
--AND page_name='home' android的page_name为空
union all
SELECT cl_id,
partition_date,
action,
params['page_name'] as page_name,
'美购首页-大家都在搜' as input_type,
app_version,
params['card_name'] as query
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >= '{start_date}'
AND partition_date < '{end_date}'
AND action = 'on_click_card'
AND params['page_name'] = 'welfare_home'
AND params['card_type'] = 'search_word'
AND params['in_page_pos'] = '大家都在搜'
union all
SELECT cl_id,
partition_date,
action,
params['page_name'] as page_name,
'高亮词' as input_type,
app_version,
params['card_name'] as query
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >= '{start_date}'
AND partition_date < '{end_date}'
AND action = 'on_click_card'
AND params['card_type'] = 'highlight_word'
) click
LEFT JOIN
(
select distinct device_id
from ml.ml_d_ct_dv_devicespam_d --去除机构刷单设备,即作弊设备(浏览和曝光事件去除)
WHERE partition_day='{start_date}'
union all
select distinct device_id
from dim.dim_device_user_staff --去除内网用户
)spam_pv
on spam_pv.device_id=click.cl_id
LEFT JOIN
(
SELECT partition_date,device_id
FROM
(--找出user_id当天活跃的第一个设备id
SELECT user_id,partition_date,
if(size(device_list) > 0, device_list [ 0 ], '') AS device_id
FROM online.ml_user_updates
WHERE partition_date='{start_date}'
)t1
JOIN
( --医生账号
SELECT distinct user_id
FROM online.tl_hdfs_doctor_view
WHERE partition_date = '{start_date}'
--马甲账号/模特用户
UNION ALL
SELECT user_id
FROM ml.ml_c_ct_ui_user_dimen_d
WHERE partition_day = '{start_date}'
AND (is_puppet = 'true' or is_classifyuser = 'true')
UNION ALL
--公司内网覆盖用户
select distinct user_id
from dim.dim_device_user_staff
UNION ALL
--登陆过医生设备
SELECT distinct t1.user_id
FROM
(
SELECT user_id, v.device_id as device_id
FROM online.ml_user_history_detail
LATERAL VIEW EXPLODE(device_history_list) v AS device_id
WHERE partition_date = '{start_date}'
) t1
JOIN
(
SELECT device_id
FROM online.ml_device_history_detail
WHERE partition_date = '{start_date}'
AND is_login_doctor = '1'
) t2
ON t1.device_id = t2.device_id
)t2
on t1.user_id=t2.user_id
group by partition_date,device_id
)dev
on click.partition_date=dev.partition_date and click.cl_id=dev.device_id
WHERE spam_pv.device_id IS NULL
and dev.device_id is null
GROUP BY query,click.partition_date
) t3 order by all_search_uv desc
"""
.
format
(
start_date
=
yesterday_str
,
end_date
=
today_str
)
print
(
sql_search_ctr
)
search_ctr_df
=
spark
.
sql
(
sql_search_ctr
)
search_ctr_df
.
show
(
1
)
sql_res
=
search_ctr_df
.
collect
()
tag_names_list_week
=
[]
for
name
in
sql_res
:
# print(name)
word
=
name
.
query
nums
=
name
.
all_search_pv
uv
=
name
.
all_search_uv
partition_date
=
str
(
now
+
datetime
.
timedelta
(
days
=-
1
))
tag_names_list_week
.
append
((
word
,
nums
,
uv
,
partition_date
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'st_user'
,
passwd
=
'aqpuBLYzEV7tML5RPsN1pntUzFy'
,
db
=
'jerry_prod'
)
cursor
=
db
.
cursor
()
insert_sql
=
"replace into daily_search_word_count_fix(word, nums, uv,pid,partition_day) VALUES(
%
s,
%
s,
%
s,
%
s,
%
s)"
insert_list
=
[]
for
count
,
item
in
enumerate
(
tag_names_list_week
):
word
,
nums
,
uv
,
partition_date
=
item
try
:
if
len
(
word
)
>=
200
:
continue
pid
=
hashlib
.
md5
((
partition_date
+
word
)
.
encode
(
"utf8"
))
.
hexdigest
()
insert_sql_tuple
=
(
word
,
nums
,
uv
,
pid
,
partition_date
)
insert_list
.
append
(
insert_sql_tuple
)
# print(insert_sql_tuple)
except
:
continue
if
count
%
100
==
0
:
cursor
.
execute
(
"set names 'UTF8'"
)
res
=
cursor
.
executemany
(
insert_sql
,
insert_list
)
db
.
commit
()
# print(res)
insert_list
=
[]
# print(count)
res
=
cursor
.
executemany
(
insert_sql
,
insert_list
)
db
.
commit
()
db
.
close
()
print
(
res
)
if
__name__
==
"__main__"
:
tag_names_list
=
[]
tag_names_list_week
=
[]
all_data_day
=
[]
all_data_week
=
[]
task/recommend_strategy_fix.py
View file @
c6d34498
...
...
@@ -79,8 +79,7 @@ spark.sql("CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJso
spark
.
sql
(
"CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'"
)
task_days
=
2
for
t
in
range
(
0
,
60
):
for
t
in
range
(
6
,
7
):
day_num
=
0
-
t
now
=
(
datetime
.
datetime
.
now
()
+
datetime
.
timedelta
(
days
=
day_num
))
last_30_day_str
=
(
now
+
datetime
.
timedelta
(
days
=-
30
))
.
strftime
(
"
%
Y
%
m
%
d"
)
...
...
@@ -839,10 +838,11 @@ for t in range(0, 60):
pid
=
hashlib
.
md5
((
day_id
+
device_os_type
+
active_type
+
card_content_type
+
recommend_type
)
.
encode
(
"utf8"
))
.
hexdigest
()
try
:
card_click_diff
=
data_dict
.
get
(
pid
)
-
card_click
print
(
card_click_diff
)
card_click
+=
card_click_diff
card_exposure
+=
card_click_diff
click_ctr
=
round
(
card_click
/
card_exposure
,
5
)
if
card_click_diff
:
print
(
card_click_diff
)
card_click
+=
card_click_diff
card_exposure
+=
card_click_diff
click_ctr
=
round
(
card_click
/
card_exposure
,
5
)
except
:
print
(
"add error"
)
instert_sql
=
"""replace into recommend_strategy_d_fix(
...
...
task/spark_test.py
View file @
c6d34498
...
...
@@ -4,12 +4,6 @@
# @email : litao@igengmei.com
# @author : litao
# -*- coding:UTF-8 -*-
# @Time : 2020/9/4 17:07
# @File : search_meigou_ctr.py
# @email : litao@igengmei.com
# @author : litao
import
hashlib
import
json
...
...
task/每日搜索词.sql
View file @
c6d34498
--搜索日报-英赫
SELECT
partition_date
as
`日期`
,
device_os_type
as
`平台`
,
active_type
as
`活跃类型`
,
channel
as
`渠道类型`
,
dau
as
`DAU`
,
all_search_uv
as
`完成搜索uv`
,
all_search_pv
as
`完成搜索pv`
,
if
(
dau
<>
0
,
concat
(
cast
((
all_search_uv
/
dau
)
*
100
as
decimal
(
18
,
2
)),
'%'
)
,
'-'
)
as
`完成搜索的用户比例`
,
if
(
all_search_uv
<>
0
,
concat
(
cast
((
all_search_pv
/
all_search_uv
)
as
decimal
(
18
,
2
)),
''
)
,
'-'
)
as
`搜索用户人均使用次数`
FROM
(
SELECT
coalesce
(
t1
.
partition_date
,
t2
.
partition_date
,
t3
.
partition_date
,
t4
.
partition_date
,
t5
.
partition_date
,
t6
.
partition_date
,
t7
.
partition_date
,
t8
.
partition_date
,
t9
.
partition_date
)
as
partition_date
,
coalesce
(
t1
.
active_type
,
t2
.
active_type
,
t3
.
active_type
,
t4
.
active_type
,
t5
.
active_type
,
t6
.
active_type
,
t7
.
active_type
,
t8
.
active_type
,
t9
.
active_type
)
as
active_type
,
coalesce
(
t1
.
device_os_type
,
t2
.
device_os_type
,
t3
.
device_os_type
,
t4
.
device_os_type
,
t5
.
device_os_type
,
t6
.
device_os_type
,
t7
.
device_os_type
,
t8
.
device_os_type
,
t9
.
device_os_type
)
as
device_os_type
,
coalesce
(
t1
.
channel
,
t2
.
channel
,
t3
.
channel
,
t4
.
channel
,
t5
.
channel
,
t6
.
channel
,
t7
.
channel
,
t8
.
channel
,
t9
.
channel
)
as
channel
,
coalesce
(
t1
.
dau
,
0
)
as
dau
,
coalesce
(
t3
.
all_search_uv
,
0
)
as
all_search_uv
--全部搜索uv
,
coalesce
(
t3
.
all_search_pv
,
0
)
as
all_search_pv
--全部搜索pv
SELECT
query
,
coalesce
(
t3
.
all_search_uv
,
0
)
as
all_search_uv
--全部搜索uv
,
coalesce
(
t3
.
all_search_pv
,
0
)
as
all_search_pv
--全部搜索pv
,
t3
.
partition_date
FROM
(
--搜索pvuv
SELECT
query
,
click
.
partition_date
as
partition_date
,
count
(
click
.
cl_id
)
as
all_search_pv
,
count
(
distinct
click
.
cl_id
)
as
all_search_uv
FROM
(
SELECT
cl_id
,
partition_date
,
action
,
params
[
'page_name'
]
as
page_name
,
params
[
'input_type'
]
as
input_type
,
app_version
,
params
[
'query'
]
as
query
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
((
action
=
'do_search'
AND
params
[
'input_type'
]
<>
'everyone_watch'
)
or
action
=
'search_result_click_search'
)
UNION
all
SELECT
cl_id
,
partition_date
,
action
,
params
[
'page_name'
]
as
page_name
,
params
[
'input_type'
]
as
input_type
,
app_version
,
params
[
'query'
]
as
query
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'do_search'
and
params
[
'input_type'
]
=
'everyone_watch'
and
params
[
'tab'
]
=
'精选'
and
page_name
=
'home'
AND
params
[
'query'
]
not
in
(
'AI测颜值'
,
'AI测肤质'
)
--这两个词不跳转搜索结果页
union
all
SELECT
cl_id
,
partition_date
,
action
,
'search_home'
as
page_name
,
''
as
input_type
,
app_version
,
params
[
'query'
]
as
query
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'on_click_card'
AND
params
[
'page_name'
]
=
'search_home'
union
all
SELECT
cl_id
,
partition_date
,
action
,
'home'
as
page_name
,
'首页-猜你喜欢'
as
input_type
,
app_version
,
params
[
'card_name'
]
as
query
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'on_click_card'
AND
params
[
'in_page_pos'
]
=
'猜你喜欢'
--AND params['tab_name']='精选'
AND
params
[
'card_type'
]
=
'search_word'
AND
params
[
'card_name'
]
not
in
(
'AI测颜值'
,
'AI测肤质'
)
--这两个词不跳转搜索结果页
--AND page_name='home' android的page_name为空
union
all
SELECT
cl_id
,
partition_date
,
action
,
params
[
'page_name'
]
as
page_name
,
'美购首页-大家都在搜'
as
input_type
,
app_version
,
params
[
'card_name'
]
as
query
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'on_click_card'
AND
params
[
'page_name'
]
=
'welfare_home'
AND
params
[
'card_type'
]
=
'search_word'
AND
params
[
'in_page_pos'
]
=
'大家都在搜'
union
all
SELECT
cl_id
,
partition_date
,
action
,
params
[
'page_name'
]
as
page_name
,
'高亮词'
as
input_type
,
app_version
,
params
[
'card_name'
]
as
query
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'on_click_card'
AND
params
[
'card_type'
]
=
'highlight_word'
)
click
GROUP
BY
click
.
partition_date
,
query
)
t3
FROM
(
--dau
SELECT
mas
.
partition_date
,
count
(
DISTINCT
mas
.
device_id
)
as
dau
FROM
(
SELECT
partition_date
,
m
.
device_id
FROM
online
.
ml_device_day_active_status
m
LEFT
JOIN
(
SELECT
code
,
is_ai_channel
,
partition_day
FROM
DIM
.
DIM_AI_CHANNEL_ZP_NEW
WHERE
partition_day
>=
'${start_date}'
AND
partition_day
<
'${end_date}'
)
tmp
ON
m
.
partition_date
=
tmp
.
partition_day
AND
first_channel_source_type
=
code
where
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
active_type
in
(
'1'
,
'2'
,
'4'
)
)
mas
GROUP
BY
mas
.
partition_date
)
t1
full
JOIN
(
--搜索发起,搜索框点击,724版本埋点修复
SELECT
click
.
partition_date
as
partition_date
,
count
(
click
.
cl_id
)
as
all_search_click_pv_724
,
count
(
distinct
click
.
cl_id
)
as
all_search_click_uv_724
FROM
(
SELECT
cl_id
,
partition_date
,
action
,
params
[
'page_name'
]
as
page_name
,
''
as
input_type
,
app_version
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'on_click_navbar_search'
AND
(
int
(
split
(
app_version
,
'
\\
.'
)[
0
])
=
7
AND
int
(
split
(
app_version
,
'
\\
.'
)[
1
])
>=
24
)
UNION
all
SELECT
cl_id
,
partition_date
,
action
,
params
[
'page_name'
]
as
page_name
,
params
[
'input_type'
]
as
input_type
,
app_version
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'do_search'
AND
params
[
'input_type'
]
=
'详情页默认词'
UNION
all
SELECT
cl_id
,
partition_date
,
action
,
page_name
,
'旧首页-大家都在看'
as
input_type
,
app_version
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'do_search'
and
params
[
'input_type'
]
=
'everyone_watch'
and
params
[
'tab'
]
=
'精选'
and
page_name
=
'home'
AND
params
[
'query'
]
not
in
(
'AI测颜值'
,
'AI测肤质'
)
--这两个词不跳转搜索结果页
union
all
SELECT
cl_id
,
partition_date
,
action
,
'home'
as
page_name
,
'新首页-猜你喜欢'
as
input_type
,
app_version
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'on_click_card'
AND
params
[
'in_page_pos'
]
=
'猜你喜欢'
--AND params['tab_name']='精选'
AND
params
[
'card_type'
]
=
'search_word'
AND
params
[
'card_name'
]
not
in
(
'AI测颜值'
,
'AI测肤质'
)
--这两个词不跳转搜索结果页
--AND page_name='home' android的page_name为空
union
all
SELECT
cl_id
,
partition_date
,
action
,
params
[
'page_name'
]
as
page_name
,
'美购首页-大家都在搜'
as
input_type
,
app_version
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'on_click_card'
AND
params
[
'page_name'
]
=
'welfare_home'
AND
params
[
'card_type'
]
=
'search_word'
AND
params
[
'in_page_pos'
]
=
'大家都在搜'
union
all
SELECT
cl_id
,
partition_date
,
action
,
params
[
'page_name'
]
as
page_name
,
'高亮词'
as
input_type
,
app_version
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'on_click_card'
AND
params
[
'card_type'
]
=
'highlight_word'
)
click
GROUP
BY
click
.
partition_date
,
active_type
,
device_os_type
,
channel
)
t2
on
t2
.
partition_date
=
t1
.
partition_date
AND
t2
.
active_type
=
t1
.
active_type
AND
t2
.
device_os_type
=
t1
.
device_os_type
AND
t2
.
channel
=
t1
.
channel
full
JOIN
(
--搜索pvuv
SELECT
click
.
partition_date
as
partition_date
,
active_type
,
device_os_type
,
channel
,
count
(
click
.
cl_id
)
as
all_search_pv
,
count
(
distinct
click
.
cl_id
)
as
all_search_uv
,
count
(
case
when
int
(
split
(
app_version
,
'
\\
.'
)[
0
])
=
7
AND
int
(
split
(
app_version
,
'
\\
.'
)[
1
])
>=
26
AND
input_type
in
(
'联想'
,
'聚合模块'
)
then
click
.
cl_id
end
)
as
sug_search_pv_726
,
count
(
distinct
case
when
int
(
split
(
app_version
,
'
\\
.'
)[
0
])
=
7
AND
int
(
split
(
app_version
,
'
\\
.'
)[
1
])
>=
26
AND
input_type
in
(
'联想'
,
'聚合模块'
)
then
click
.
cl_id
end
)
as
sug_search_uv_726
FROM
(
SELECT
cl_id
,
partition_date
,
action
,
params
[
'page_name'
]
as
page_name
,
params
[
'input_type'
]
as
input_type
,
app_version
,
params
[
'query'
]
as
query
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
((
action
=
'do_search'
AND
params
[
'input_type'
]
<>
'everyone_watch'
)
or
action
=
'search_result_click_search'
)
UNION
all
SELECT
cl_id
,
partition_date
,
action
,
params
[
'page_name'
]
as
page_name
,
params
[
'input_type'
]
as
input_type
,
app_version
,
params
[
'query'
]
as
query
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'do_search'
and
params
[
'input_type'
]
=
'everyone_watch'
and
params
[
'tab'
]
=
'精选'
and
page_name
=
'home'
AND
params
[
'query'
]
not
in
(
'AI测颜值'
,
'AI测肤质'
)
--这两个词不跳转搜索结果页
union
all
SELECT
cl_id
,
partition_date
,
action
,
'search_home'
as
page_name
,
''
as
input_type
,
app_version
,
params
[
'query'
]
as
query
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'on_click_card'
AND
params
[
'page_name'
]
=
'search_home'
union
all
SELECT
cl_id
,
partition_date
,
action
,
'home'
as
page_name
,
'首页-猜你喜欢'
as
input_type
,
app_version
,
params
[
'card_name'
]
as
query
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'on_click_card'
AND
params
[
'in_page_pos'
]
=
'猜你喜欢'
--AND params['tab_name']='精选'
AND
params
[
'card_type'
]
=
'search_word'
AND
params
[
'card_name'
]
not
in
(
'AI测颜值'
,
'AI测肤质'
)
--这两个词不跳转搜索结果页
--AND page_name='home' android的page_name为空
union
all
SELECT
cl_id
,
partition_date
,
action
,
params
[
'page_name'
]
as
page_name
,
'美购首页-大家都在搜'
as
input_type
,
app_version
,
params
[
'card_name'
]
as
query
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'on_click_card'
AND
params
[
'page_name'
]
=
'welfare_home'
AND
params
[
'card_type'
]
=
'search_word'
AND
params
[
'in_page_pos'
]
=
'大家都在搜'
union
all
SELECT
cl_id
,
partition_date
,
action
,
params
[
'page_name'
]
as
page_name
,
'高亮词'
as
input_type
,
app_version
,
params
[
'card_name'
]
as
query
FROM
online
.
bl_hdfs_maidian_updates
WHERE
partition_date
>=
'${start_date}'
AND
partition_date
<
'${end_date}'
AND
action
=
'on_click_card'
AND
params
[
'card_type'
]
=
'highlight_word'
)
click
GROUP
BY
click
.
partition_date
,
active_type
,
device_os_type
,
channel
)
t3
on
t3
.
partition_date
=
t1
.
partition_date
AND
t3
.
active_type
=
t1
.
active_type
AND
t3
.
device_os_type
=
t1
.
device_os_type
AND
t3
.
channel
=
t1
.
channel
)
t
ORDER
BY
`日期`
,
`平台`
,
`活跃类型`
,
`渠道类型`
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment