# -*- coding:UTF-8 -*- # @Time : 2020/9/11 17:37 # @File : ecommerce_income_report.py # @email : litao@igengmei.com # @author : litao # -*- coding:UTF-8 -*- # @Time : 2020/9/4 17:07 # @File : search_meigou_ctr.py # @email : litao@igengmei.com # @author : litao import hashlib import json import pymysql import xlwt, datetime import redis # from pyhive import hive from maintenance.func_send_email_with_file import send_file_email from typing import Dict, List from elasticsearch_7 import Elasticsearch from elasticsearch_7.helpers import scan import sys import time from pyspark import SparkConf from pyspark.sql import SparkSession, DataFrame # from pyspark.sql.functions import lit # import pytispark.pytispark as pti def con_sql(sql): # 从数据库的表里获取数据 db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy', db='jerry_prod') cursor = db.cursor() cursor.execute(sql) result = cursor.fetchall() db.close() return result startTime = time.time() sparkConf = SparkConf() sparkConf.set("spark.sql.crossJoin.enabled", True) sparkConf.set("spark.debug.maxToStringFields", "100") sparkConf.set("spark.tispark.plan.allow_index_double_read", False) sparkConf.set("spark.tispark.plan.allow_index_read", True) sparkConf.set("spark.hive.mapred.supports.subdirectories", True) sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True) sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") sparkConf.set("mapreduce.output.fileoutputformat.compress", False) sparkConf.set("mapreduce.map.output.compress", False) sparkConf.set("prod.gold.jdbcuri", "jdbc:mysql://172.16.30.136/doris_prod?user=doris&password=o5gbA27hXHHm&rewriteBatchedStatements=true") sparkConf.set("prod.mimas.jdbcuri", "jdbc:mysql://172.16.30.138/mimas_prod?user=mimas&password=GJL3UJe1Ck9ggL6aKnZCq4cRvM&rewriteBatchedStatements=true") sparkConf.set("prod.gaia.jdbcuri", "jdbc:mysql://172.16.30.143/zhengxing?user=work&password=BJQaT9VzDcuPBqkd&rewriteBatchedStatements=true") sparkConf.set("prod.tidb.jdbcuri", "jdbc:mysql://172.16.40.158:4000/eagle?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true") sparkConf.set("prod.jerry.jdbcuri", "jdbc:mysql://172.16.40.158:4000/jerry_prod?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true") sparkConf.set("prod.tispark.pd.addresses", "172.16.40.158:2379") sparkConf.set("prod.tispark.pd.addresses", "172.16.40.170:4000") sparkConf.set("prod.tidb.database", "jerry_prod") sparkConf.setAppName("search_diary_ctr") spark = (SparkSession.builder.config(conf=sparkConf).config("spark.sql.extensions", "org.apache.spark.sql.TiExtensions") .config("spark.tispark.pd.addresses", "172.16.40.170:2379").appName( "search_diary_ctr").enableHiveSupport().getOrCreate()) spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/brickhouse-0.7.1-SNAPSHOT.jar") spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/hive-udf-1.0-SNAPSHOT.jar") spark.sql("CREATE TEMPORARY FUNCTION json_map AS 'brickhouse.udf.json.JsonMapUDF'") spark.sql("CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJsonFormatCheck'") spark.sql("CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'") task_list = [] task_days = 3 for t in range(1, task_days): day_num = 0 - t now = (datetime.datetime.now() + datetime.timedelta(days=day_num)) last_30_day_str = (now + datetime.timedelta(days=-30)).strftime("%Y%m%d") today_str = now.strftime("%Y%m%d") yesterday_str = (now + datetime.timedelta(days=-1)).strftime("%Y%m%d") one_week_age_str = (now + datetime.timedelta(days=-7)).strftime("%Y%m%d") # CPT日均点击 cpc_daily_click_sql = r""" SELECT partition_date,count(1) as pv FROM online.bl_hdfs_maidian_updates WHERE partition_date >= '{start_date}' and partition_date < '{end_date}' AND ((ACTION = 'search_result_welfare_click_item' AND PAGE_NAME = 'search_result_welfare' AND PARAMS['transaction_type'] = 'advertise') OR (ACTION = 'goto_welfare_detail' AND PARAMS['from'] = 'category' AND PARAMS['transaction_type'] = 'operating' AND PARAMS['tab_name'] = 'service') OR (ACTION = 'goto_welfare_detail' AND PARAMS['from'] = 'welfare_home_list_item' and PARAMS['transaction_type'] = 'advertise') OR (ACTION = 'goto_welfare_detail' AND PARAMS['from'] = 'welfare_list' AND PARAMS['transaction_type'] = 'advertise') OR (ACTION = 'on_click_card' AND PARAMS['card_content_type'] = 'service' AND PARAMS['page_name'] IN ('new_sign','search_result_welfare','category','welfare_home_list_item','welfare_list') AND PARAMS['transaction_type'] = 'advertise')) group BY partition_date """.format(partition_day=yesterday_str, end_date=today_str) print(cpc_daily_click_sql) cpc_daily_click_df = spark.sql(cpc_daily_click_sql) cpc_daily_click_df.createOrReplaceTempView("cpc_daily_click") cpc_daily_click_df.show(1) sql_res = cpc_daily_click_df.collect() # 商详页PV bus_detail_sql = r""" SELECT partition_date,count(1) welfare_pv FROM ( SELECT cl_id,partition_date FROM bl_hdfs_maidian_updates WHERE partition_date >='{start_date}'and partition_date < '{end_date}' AND action='page_view' AND params['page_name'] = 'welfare_detail' )a1 JOIN ( SELECT device_id,partition_date from online.ml_device_day_active_status WHERE partition_date >='{start_date}'and partition_date < '{end_date}' AND active_type in ('1','2','4') )a2 on a2.device_id = a1.cl_id AND a2.partition_date=a1.partition_date group by partition_date """.format(partition_day=yesterday_str, end_date=today_str) print(bus_detail_sql) bus_detail_df = spark.sql(bus_detail_sql) bus_detail_df.createOrReplaceTempView("bus_detail") bus_detail_df.show(1) sql_res = bus_detail_df.collect() # --cpc当日预算(有效口径) cpc_budget_sql = r""" SELECT day_id,sum(budget) as budget FROM ( SELECT T1.day_id,T1.merchant_doctor_id,case when merchant_budget>=tot_service_budget then tot_service_budget else merchant_budget end as budget FROM ( SELECT substr(clicklog.create_time,1,10) AS day_id ,clicklog.merchant_doctor_id ,max(merchant_budget) as merchant_budget --商户预算 FROM ( SELECT id,promote_id,price,service_budget,merchant_budget,merchant_doctor_id,create_time,recharge FROM online.tl_hdfs_cpc_clicklog_view WHERE partition_date='{partition_date}' AND regexp_replace(substr(create_time,1,10),'-','')>= '{start_date}' AND regexp_replace(substr(create_time,1,10),'-','')<'{end_date}' )clicklog group by substr(clicklog.create_time,1,10),clicklog.merchant_doctor_id )T1 LEFT JOIN ( SELECT day_id ,merchant_doctor_id ,sum(service_budget) as tot_service_budget FROM ( SELECT substr(clicklog.create_time,1,10) AS day_id ,clicklog.merchant_doctor_id,clicklog.service_id ,max(service_budget) as service_budget FROM ( SELECT id,promote_id,price,service_budget,merchant_budget,merchant_doctor_id,service_id,create_time FROM online.tl_hdfs_cpc_clicklog_view WHERE partition_date='{partition_date}' AND regexp_replace(substr(create_time,1,10),'-','')>= '{start_date}' AND regexp_replace(substr(create_time,1,10),'-','')<'{end_date}' )clicklog GROUP BY substr(clicklog.create_time,1,10),clicklog.merchant_doctor_id,clicklog.service_id )service_budget GROUP BY day_id,merchant_doctor_id )T2 ON T1.day_id=T2.day_id AND T1.merchant_doctor_id=T2.merchant_doctor_id )T GROUP BY day_id """.format(partition_day=yesterday_str, end_date=today_str) print(cpc_budget_sql) cpc_budget_df = spark.sql(cpc_budget_sql) cpc_budget_df.createOrReplaceTempView("cpc_budget") cpc_budget_df.show(1) sql_res = cpc_budget_df.collect() # cpc收入、广告总消耗 cpc_income_sql = r""" select partition_day, sum(case when advertise_type = 'cpc' AND advertise_business_type in('service') and advertise_calculate_type='cpc_log' then cpc_click_num end) cpc_click_num,--- 当天cpc商品点击量 sum(case when advertise_type = 'cpc' AND advertise_business_type in('service') and advertise_calculate_type='cpc_flownext' then proportion_expend_amount end) cpc_proportion_expend_amount,--- 当天cpc总收入(含返点) sum(case when advertise_type = 'cpc' AND advertise_business_type in('service') and advertise_calculate_type='cpc_flownext' then proportion_expend_recharge_amount end) cpc_proportion_expend_recharge_amount,--- 当天cpc收入(不含返点) SUM(CASE WHEN advertise_type = 'cpc' AND advertise_calculate_type = 'cpc_flownext' THEN proportion_expend_amount WHEN advertise_type = 'cpt' AND advertise_calculate_type = 'cpt_schedule' THEN proportion_expend_amount WHEN advertise_type IN ('browse', 'message', 'valueadded','rechargededuction') THEN proportion_expend_amount WHEN advertise_type = 'adjustment' AND advertise_calculate_type ='adjustment_flow' THEN proportion_expend_amount ELSE 0 END) tol_proportion_expend_amount --等比例返点消耗总金额 from ml.ml_c_ct_mc_merchantadclassify_indic_d where partition_day>='{start_date}' AND partition_day <'{end_date}' group by partition_day """.format(partition_day=yesterday_str, end_date=today_str) print(cpc_income_sql) cpc_income_df = spark.sql(cpc_income_sql) cpc_income_df.createOrReplaceTempView("cpc_income") cpc_income_df.show(1) sql_res = cpc_income_df.collect() for active_type in res_dict: db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy', db='jerry_prod') cursor = db.cursor() partition_date = yesterday_str pid = hashlib.md5((partition_date + device_os_type + active_type).encode("utf8")).hexdigest() cpc_daily_click_sql = """replace into search_diary_ctr( partition_date,device_os_type,active_type,pid,click_num,exposure,search_ctr) VALUES('{partition_date}','{device_os_type}','{active_type}','{pid}',{click_num},{exposure},{search_ctr});""".format( partition_date=partition_date, device_os_type=device_os_type, active_type=active_type, pid=pid, click_num=click_num, exposure=exposure, search_ctr=search_ctr ) print(instert_sql) # cursor.execute("set names 'UTF8'") res = cursor.execute(instert_sql) db.commit() print(res) # cursor.executemany() db.close()