# -*- coding:UTF-8 -*- # @Time : 2020/9/15 13:37 # @File : meigou_data.py # @email : litao@igengmei.com # @author : litao # -*- coding:UTF-8 -*- # @Time : 2020/9/14 14:53 # @File : meigou_huidu_huisu.py # @email : litao@igengmei.com # @author : litao # -*- coding:UTF-8 -*- # @Time : 2020/9/4 17:07 # @File : search_meigou_ctr.py # @email : litao@igengmei.com # @author : litao import hashlib import json import pymysql import xlwt, datetime import redis # from pyhive import hive from maintenance.func_send_email_with_file import send_file_email from typing import Dict, List from elasticsearch_7 import Elasticsearch from elasticsearch_7.helpers import scan import sys import time from pyspark import SparkConf from pyspark.sql import SparkSession, DataFrame # from pyspark.sql.functions import lit # import pytispark.pytispark as pti def con_sql(sql): # 从数据库的表里获取数据 db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy', db='jerry_prod') cursor = db.cursor() cursor.execute(sql) result = cursor.fetchall() db.close() return result startTime = time.time() sparkConf = SparkConf() sparkConf.set("spark.sql.crossJoin.enabled", True) sparkConf.set("spark.debug.maxToStringFields", "100") sparkConf.set("spark.tispark.plan.allow_index_double_read", False) sparkConf.set("spark.tispark.plan.allow_index_read", True) sparkConf.set("spark.hive.mapred.supports.subdirectories", True) sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True) sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") sparkConf.set("mapreduce.output.fileoutputformat.compress", False) sparkConf.set("mapreduce.map.output.compress", False) sparkConf.set("prod.gold.jdbcuri", "jdbc:mysql://172.16.30.136/doris_prod?user=doris&password=o5gbA27hXHHm&rewriteBatchedStatements=true") sparkConf.set("prod.mimas.jdbcuri", "jdbc:mysql://172.16.30.138/mimas_prod?user=mimas&password=GJL3UJe1Ck9ggL6aKnZCq4cRvM&rewriteBatchedStatements=true") sparkConf.set("prod.gaia.jdbcuri", "jdbc:mysql://172.16.30.143/zhengxing?user=work&password=BJQaT9VzDcuPBqkd&rewriteBatchedStatements=true") sparkConf.set("prod.tidb.jdbcuri", "jdbc:mysql://172.16.40.158:4000/eagle?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true") sparkConf.set("prod.jerry.jdbcuri", "jdbc:mysql://172.16.40.158:4000/jerry_prod?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true") sparkConf.set("prod.tispark.pd.addresses", "172.16.40.158:2379") sparkConf.set("prod.tispark.pd.addresses", "172.16.40.170:4000") sparkConf.set("prod.tidb.database", "jerry_prod") sparkConf.setAppName("search_diary_ctr") spark = (SparkSession.builder.config(conf=sparkConf).config("spark.sql.extensions", "org.apache.spark.sql.TiExtensions") .config("spark.tispark.pd.addresses", "172.16.40.170:2379").appName( "search_diary_ctr").enableHiveSupport().getOrCreate()) # spark.sparkContext.setLogLevel("ERROR") spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/brickhouse-0.7.1-SNAPSHOT.jar") spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/hive-udf-1.0-SNAPSHOT.jar") spark.sql("CREATE TEMPORARY FUNCTION json_map AS 'brickhouse.udf.json.JsonMapUDF'") spark.sql("CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJsonFormatCheck'") spark.sql("CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'") task_list = [] task_days = 50 for t in range(1, task_days): day_num = 0 - t now = (datetime.datetime.now() + datetime.timedelta(days=day_num)) last_30_day_str = (now + datetime.timedelta(days=-30)).strftime("%Y%m%d") today_str = now.strftime("%Y%m%d") yesterday_str = (now + datetime.timedelta(days=-1)).strftime("%Y%m%d") one_week_age_str = (now + datetime.timedelta(days=-7)).strftime("%Y%m%d") sql_search_ctr = r""" SELECT t1.partition_date as partition_date ,active_type as active_type ,device_os_type as device_os_type ,grey_type as grey_type ,round(NVL(sum(click_pv),0)/NVL(sum(exp_pv),0),4) as clickpv_div_exposurepv--`卡片点击pv/卡片精准曝光pv(%)` ,round(NVL(sum(two_click_pv),0)/NVL(sum(exp_pv),0),4) as ertiaopv_div_exposurepv--`有效二跳pv/卡片精准曝光pv(%)` ,round(NVL(sum(two_click_pv),0)/NVL(sum(click_pv),0),4) as ertiaopv_div_clickpv --`有效二跳pv/卡片点击pv(%)` ,round(NVL(sum(cpc_exp_pv),0)/NVL(sum(exp_pv),0),4) as cpcpv_div_exposurepv --`cpc卡片曝光pv/卡片精准曝光pv(%)` ,NVL(sum(click_pv),0) as click_pv--`卡片点击pv` ,NVL(sum(exp_pv),0) as exp_pv--`卡片曝光pv` ,NVL(sum(two_click_pv),0) as two_click_pv--`有效二跳pv` ,NVL(sum(cpc_click_pv),0) as cpc_click_pv--`cpc卡片点击pv` ,NVL(sum(cpc_exp_pv),0) as cpc_exp_pv --`cpc卡片曝光pv` FROM ( SELECT partition_date ,device_os_type ,CASE WHEN active_type = '4' THEN '老活' WHEN active_type IN ('1','2') THEN '新增' END AS active_type ,device_id ,CASE WHEN substr(md5(device_id),-1) in ('0','1','2','3','4','5','6','7') THEN '灰度' ELSE '非灰' END AS grey_type FROM online.ml_device_day_active_status WHERE partition_date>={start_day} AND partition_date<= {partition_day} AND active_type IN ('1','2','4') )t1 JOIN (--精准曝光 SELECT cl_id,partition_date,card_id,count(1) as exp_pv,count(CASE WHEN get_json_object(exposure_card, '$.is_cpc')=1 THEN 1 END) as cpc_exp_pv FROM online.ml_community_precise_exposure_detail WHERE partition_date>={start_day} AND partition_date<= {partition_day} AND action in ('page_precise_exposure','home_choiceness_card_exposure') --7745版本action改为page_precise_exposure AND page_name in('welfare_home') AND tab_name in ('精选') AND card_content_type ='service' and (get_json_object(exposure_card,'$.in_page_pos')='' or get_json_object(exposure_card,'$.in_page_pos') is null) group by partition_date,cl_id,card_id )t2 on t1.device_id=t2.cl_id and t1.partition_date=t2.partition_date LEFT JOIN (--卡片点击 SELECT cl_id,partition_date,params['card_id'] as card_id,count(1) as click_pv,count(CASE WHEN params['is_cpc']=1 THEN 1 ELSE 0 END) as cpc_click_pv FROM online.bl_hdfs_maidian_updates WHERE partition_date>={start_day} AND partition_date<= {partition_day} AND action='on_click_card' AND params['tab_name']='精选' AND params['page_name'] ='welfare_home' AND params['card_content_type'] ='service' GROUP BY cl_id,partition_date,params['card_id'] )t3 on t2.partition_date=t3.partition_date and t2.cl_id=t3.cl_id and t2.card_id=t3.card_id LEFT JOIN (--商祥二跳 SELECT cl_id,partition_date,params['service_id'] as service_id,count(1) as two_click_pv FROM online.bl_hdfs_maidian_updates WHERE partition_date>={start_day} AND partition_date<= {partition_day} AND (referrer in ('welfare_home') or (params['referrer_link'] like '%[%' and json_split(params['referrer_link'])[size(json_split(params['referrer_link']))-1] in ('welfare_home'))) AND ((action in ('welfare_multiattribute_click_add','welfare_multiattribute_click_buy') AND page_name = 'welfare_detail') or action = 'welfare_detail_click_message') GROUP BY cl_id,partition_date,params['service_id'] )t4 on t3.partition_date=t4.partition_date and t3.cl_id=t4.cl_id and t3.card_id=t4.service_id LEFT JOIN ( SELECT distinct device_id FROM dim.dim_device_user_staff --去除内网用户 UNION ALL SELECT device_id FROM ml.ml_d_ct_dv_devicespam_d --剔除刷量设备 WHERE partition_day={partition_day} )a on t1.device_id=a.device_id LEFT JOIN ( SELECT partition_date,device_id FROM (--找出user_id当天活跃的第一个设备id SELECT user_id,partition_date, if(size(device_list) > 0, device_list [ 0 ], '') AS device_id FROM online.ml_user_updates WHERE partition_date>={start_day} AND partition_date<= {partition_day} )t1 JOIN ( --医生账号 SELECT distinct user_id FROM online.tl_hdfs_doctor_view WHERE partition_date = {partition_day} --马甲账号/模特用户 UNION ALL SELECT user_id FROM ml.ml_c_ct_ui_user_dimen_d WHERE partition_day = {partition_day} AND (is_puppet = 'true' or is_classifyuser = 'true') UNION ALL --公司内网覆盖用户 select distinct user_id from dim.dim_device_user_staff UNION ALL --登陆过医生设备 SELECT distinct t1.user_id FROM ( SELECT user_id, v.device_id as device_id FROM online.ml_user_history_detail LATERAL VIEW EXPLODE(device_history_list) v AS device_id WHERE partition_date = {partition_day} )t1 JOIN ( SELECT device_id FROM online.ml_device_history_detail WHERE partition_date = {partition_day} AND is_login_doctor = '1' )t2 ON t1.device_id = t2.device_id )t2 on t1.user_id=t2.user_id group by partition_date,device_id )b on t1.partition_date=b.partition_date and t1.device_id=b.device_id where (a.device_id is NULL or a.device_id ='') and (b.device_id is null or b.device_id ='') GROUP BY t1.partition_date ,grey_type,active_type,device_os_type order by 1 """.format(partition_day=today_str, start_day=yesterday_str) print(sql_search_ctr) search_ctr_df = spark.sql(sql_search_ctr) # spam_pv_df.createOrReplaceTempView("dev_view") search_ctr_df.show(1) sql_res = search_ctr_df.collect() for res in sql_res: # print(res) partition_date = res.partition_date device_os_type = res.device_os_type active_type = res.active_type grey_type = res.grey_type clickpv_div_exposurepv = res.clickpv_div_exposurepv ertiaopv_div_exposurepv = res.ertiaopv_div_exposurepv ertiaopv_div_clickpv = res.ertiaopv_div_clickpv cpcpv_div_exposurepv = res.cpcpv_div_exposurepv click_pv = res.click_pv exp_pv = res.exp_pv two_click_pv = res.two_click_pv cpc_click_pv = res.cpc_click_pv cpc_exp_pv = res.cpc_exp_pv pid = hashlib.md5( (partition_date + device_os_type + active_type + grey_type).encode("utf8")).hexdigest() db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy', db='jerry_prod') cursor = db.cursor() commit_sql = """replace into meigou_data(partition_date,device_os_type,active_type,grey_type,clickpv_div_exposurepv, ertiaopv_div_exposurepv,ertiaopv_div_clickpv,cpcpv_div_exposurepv,click_pv,exp_pv,two_click_pv,cpc_click_pv,cpc_exp_pv, pid ) VALUES('{partition_date}','{device_os_type}','{active_type}','{grey_type}',{clickpv_div_exposurepv}, {ertiaopv_div_exposurepv},{ertiaopv_div_clickpv},{cpcpv_div_exposurepv},{click_pv},{exp_pv},{two_click_pv}, {cpc_click_pv},{cpc_exp_pv},'{pid}' );""".format(partition_date=partition_date,device_os_type=device_os_type,active_type=active_type, grey_type=grey_type,clickpv_div_exposurepv=clickpv_div_exposurepv,ertiaopv_div_exposurepv=ertiaopv_div_exposurepv, ertiaopv_div_clickpv=ertiaopv_div_clickpv,cpcpv_div_exposurepv=cpcpv_div_exposurepv, click_pv=click_pv,exp_pv=exp_pv,two_click_pv=two_click_pv,cpc_click_pv=cpc_click_pv,cpc_exp_pv=cpc_exp_pv, pid=pid ) print(commit_sql) # cursor.execute("set names 'UTF8'") res = cursor.execute(commit_sql) db.commit() print(res) # cursor.executemany() db.close()