# -*- coding:UTF-8 -*- # @Time : 2020/9/11 17:37 # @File : ecommerce_income_report.py # @email : litao@igengmei.com # @author : litao # -*- coding:UTF-8 -*- # @Time : 2020/9/4 17:07 # @File : search_meigou_ctr.py # @email : litao@igengmei.com # @author : litao import hashlib import json import pymysql import xlwt, datetime import redis # from pyhive import hive from maintenance.func_send_email_with_file import send_file_email from typing import Dict, List from elasticsearch_7 import Elasticsearch from elasticsearch_7.helpers import scan import sys import time from pyspark import SparkConf from pyspark.sql import SparkSession, DataFrame # from pyspark.sql.functions import lit # import pytispark.pytispark as pti def con_sql(sql): # 从数据库的表里获取数据 db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy', db='jerry_prod') cursor = db.cursor() cursor.execute(sql) result = cursor.fetchall() db.close() return result startTime = time.time() sparkConf = SparkConf() sparkConf.set("spark.sql.crossJoin.enabled", True) sparkConf.set("spark.debug.maxToStringFields", "100") sparkConf.set("spark.tispark.plan.allow_index_double_read", False) sparkConf.set("spark.tispark.plan.allow_index_read", True) sparkConf.set("spark.hive.mapred.supports.subdirectories", True) sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True) sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") sparkConf.set("mapreduce.output.fileoutputformat.compress", False) sparkConf.set("mapreduce.map.output.compress", False) sparkConf.set("prod.gold.jdbcuri", "jdbc:mysql://172.16.30.136/doris_prod?user=doris&password=o5gbA27hXHHm&rewriteBatchedStatements=true") sparkConf.set("prod.mimas.jdbcuri", "jdbc:mysql://172.16.30.138/mimas_prod?user=mimas&password=GJL3UJe1Ck9ggL6aKnZCq4cRvM&rewriteBatchedStatements=true") sparkConf.set("prod.gaia.jdbcuri", "jdbc:mysql://172.16.30.143/zhengxing?user=work&password=BJQaT9VzDcuPBqkd&rewriteBatchedStatements=true") sparkConf.set("prod.tidb.jdbcuri", "jdbc:mysql://172.16.40.158:4000/eagle?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true") sparkConf.set("prod.jerry.jdbcuri", "jdbc:mysql://172.16.40.158:4000/jerry_prod?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true") sparkConf.set("prod.tispark.pd.addresses", "172.16.40.158:2379") sparkConf.set("prod.tispark.pd.addresses", "172.16.40.170:4000") sparkConf.set("prod.tidb.database", "jerry_prod") sparkConf.setAppName("search_diary_ctr") spark = (SparkSession.builder.config(conf=sparkConf).config("spark.sql.extensions", "org.apache.spark.sql.TiExtensions") .config("spark.tispark.pd.addresses", "172.16.40.170:2379").appName( "search_diary_ctr").enableHiveSupport().getOrCreate()) spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/brickhouse-0.7.1-SNAPSHOT.jar") spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/hive-udf-1.0-SNAPSHOT.jar") spark.sql("CREATE TEMPORARY FUNCTION json_map AS 'brickhouse.udf.json.JsonMapUDF'") spark.sql("CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJsonFormatCheck'") spark.sql("CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'") task_list = [] task_days = 60 for t in range(1, task_days): day_num = 0 - t now = (datetime.datetime.now() + datetime.timedelta(days=day_num)) last_30_day_str = (now + datetime.timedelta(days=-30)).strftime("%Y%m%d") today_str = now.strftime("%Y%m%d") yesterday_str = (now + datetime.timedelta(days=-1)).strftime("%Y%m%d") one_week_age_str = (now + datetime.timedelta(days=-7)).strftime("%Y%m%d") # quanzhong_dau quanzhong_dau_sql = """ --quanzhong_dau SELECT mas.partition_date ,round(count(DISTINCT CASE WHEN device_type = '老活' AND device_os_type = 'android' AND channel_type = 'AI' THEN device_id END)*0.14 +count(DISTINCT CASE WHEN device_type = '老活' AND device_os_type = 'android' AND channel_type = '医美' THEN device_id END)*0.64 +count(DISTINCT CASE WHEN device_type = '新增' AND device_os_type = 'android' AND channel_type = 'AI' THEN device_id END)*0.08 +count(DISTINCT CASE WHEN device_type = '新增' AND device_os_type = 'android' AND channel_type = '医美' THEN device_id END)*0.19 +count(DISTINCT CASE WHEN device_type = '老活' AND device_os_type = 'ios' AND channel_type = 'AI' THEN device_id END)*0.32 +count(DISTINCT CASE WHEN device_type = '老活' AND device_os_type = 'ios' AND channel_type = '积分墙' THEN device_id END)*0.28 +count(DISTINCT CASE WHEN device_type = '老活' AND device_os_type = 'ios' AND channel_type = '医美' THEN device_id END)*1.00 +count(DISTINCT CASE WHEN device_type = '新增' AND device_os_type = 'ios' AND channel_type = 'AI' THEN device_id END)*0.19 +count(DISTINCT CASE WHEN device_type = '新增' AND device_os_type = 'ios' AND channel_type = '积分墙' THEN device_id END)*0.03 +count(DISTINCT CASE WHEN device_type = '新增' AND device_os_type = 'ios' AND channel_type = '医美' THEN device_id END)*0.57,0) as quanzhong_dau FROM ( SELECT partition_date,m.device_id,device_os_type ,case WHEN active_type = '4' THEN '老活' WHEN active_type in ('1','2') then '新增' END as device_type ,CASE WHEN is_ai_channel = 'true' THEN 'AI' WHEN first_channel_source_type in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3' ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang' ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1' ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4' ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100' ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ' ,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown') then '积分墙' ELSE '医美' END as channel_type FROM online.ml_device_day_active_status m LEFT JOIN (SELECT code,is_ai_channel,partition_day FROM DIM.DIM_AI_CHANNEL_ZP_NEW WHERE partition_day>= '{start_date}' AND partition_day < '{end_date}' ) tmp ON m.partition_date=tmp.partition_day AND first_channel_source_type=code where partition_date >= '{start_date}' AND partition_date < '{end_date}' AND active_type in ('1','2','4') ) mas GROUP BY mas.partition_date """.format(start_date=yesterday_str, end_date=today_str) print(quanzhong_dau_sql) quanzhong_dau_df = spark.sql(quanzhong_dau_sql) quanzhong_dau_df.createOrReplaceTempView("quanzhong_dau_view") quanzhong_dau_df.show(1) sql_res = quanzhong_dau_df.collect() for res in sql_res: quanzhong_dau = res.quanzhong_dau partition_date = res.partition_date # DAU DAU_sql = """ SELECT mas.partition_date,count(DISTINCT mas.device_id) as dau FROM ( SELECT partition_date,m.device_id ,array(device_os_type ,'合计') as device_os_type ,array(case WHEN active_type = '4' THEN '老活' WHEN active_type in ('1','2') then '新增' END ,'合计') as active_type ,array(CASE WHEN is_ai_channel = 'true' THEN 'AI' ELSE '其他' END , '合计') as channel FROM online.ml_device_day_active_status m LEFT JOIN (SELECT code,is_ai_channel,partition_day FROM DIM.DIM_AI_CHANNEL_ZP_NEW WHERE partition_day>= '{start_date}' AND partition_day < '{end_date}' ) tmp ON m.partition_date=tmp.partition_day AND first_channel_source_type=code where partition_date >= '{start_date}' AND partition_date < '{end_date}' AND active_type in ('1','2','4') ) mas LATERAL VIEW explode(mas.channel) t2 AS channel LATERAL VIEW explode(mas.device_os_type) t2 AS device_os_type LATERAL VIEW explode(mas.active_type) t2 AS active_type GROUP BY mas.partition_date """.format(start_date=yesterday_str, end_date=today_str) print(DAU_sql) dau_df = spark.sql(DAU_sql) dau_df.createOrReplaceTempView("dau_view") dau_df.show(1) sql_res = dau_df.collect() for res in sql_res: dau = res.dau # CPT日均点击 cpc_daily_click_sql = r""" SELECT partition_date,count(1) as pv FROM online.bl_hdfs_maidian_updates WHERE partition_date >= '{start_date}' and partition_date < '{end_date}' AND ((ACTION = 'search_result_welfare_click_item' AND PAGE_NAME = 'search_result_welfare' AND PARAMS['transaction_type'] = 'advertise') OR (ACTION = 'goto_welfare_detail' AND PARAMS['from'] = 'category' AND PARAMS['transaction_type'] = 'operating' AND PARAMS['tab_name'] = 'service') OR (ACTION = 'goto_welfare_detail' AND PARAMS['from'] = 'welfare_home_list_item' and PARAMS['transaction_type'] = 'advertise') OR (ACTION = 'goto_welfare_detail' AND PARAMS['from'] = 'welfare_list' AND PARAMS['transaction_type'] = 'advertise') OR (ACTION = 'on_click_card' AND PARAMS['card_content_type'] = 'service' AND PARAMS['page_name'] IN ('new_sign','search_result_welfare','category','welfare_home_list_item','welfare_list') AND PARAMS['transaction_type'] = 'advertise')) group BY partition_date """.format(partition_day=yesterday_str, end_date=today_str, start_date=yesterday_str) print(cpc_daily_click_sql) cpc_daily_click_df = spark.sql(cpc_daily_click_sql) cpc_daily_click_df.createOrReplaceTempView("cpc_daily_click") cpc_daily_click_df.show(1) sql_res = cpc_daily_click_df.collect() for res in sql_res: pv = res.pv # 商详页PV pv_sql = """ SELECT a1.partition_date,count(1) welfare_pv FROM ( SELECT cl_id,partition_date FROM online.bl_hdfs_maidian_updates WHERE partition_date >='{start_date}'and partition_date < '{end_date}' AND action='page_view' AND params['page_name'] = 'welfare_detail' )a1 JOIN ( SELECT device_id,partition_date from online.ml_device_day_active_status WHERE partition_date >='{start_date}'and partition_date < '{end_date}' AND active_type in ('1','2','4') )a2 on a2.device_id = a1.cl_id AND a2.partition_date=a1.partition_date group by a1.partition_date """.format(start_date=yesterday_str,end_date=today_str) all_pv_df = spark.sql(pv_sql) all_pv_df.show(1) sql_res = all_pv_df.collect() for res in sql_res: welfare_pv = res.welfare_pv # 搜索商详页PV bus_detail_sql = r""" --页面浏览pvuv SELECT page.partition_date as partition_date ,count(case when page_name in ('search_home','search_home_more','search_home_welfare','search_home_diary','search_home_wiki','search_home_post','search_home_hospital','search_home_doctor') then page.cl_id else NULL end) as search_home_pv ,count(distinct case when page_name in ('search_home','search_home_more','search_home_welfare','search_home_diary','search_home_wiki','search_home_post','search_home_hospital','search_home_doctor') then page.cl_id else NULL end) as search_home_uv ,count(CASE when referrer in ('search_result_diary','search_result_doctor','search_result_hospital','search_result_more' ,'search_result_more_infomation','search_result_more_user','search_result_post','search_result_welfare' ,'search_result_wiki','search_result_question_answer') and page_name in ('welfare_detail','organization_detail','expert_detail') THEN page.cl_id else NULL END) as referrer_search_hexin_pv ,count(CASE when referrer in ('search_result_diary','search_result_doctor','search_result_hospital','search_result_more' ,'search_result_more_infomation','search_result_more_user','search_result_post','search_result_welfare' ,'search_result_wiki','search_result_question_answer') and page_name in ('welfare_detail') THEN page.cl_id else NULL END) as referrer_search_welfare_pv ,count(CASE when referrer in ('search_result_diary','search_result_doctor','search_result_hospital','search_result_more' ,'search_result_more_infomation','search_result_more_user','search_result_post','search_result_welfare' ,'search_result_wiki','search_result_question_answer') and page_name in ('diary_detail','topic_detail','post_detail','user_post_detail','doctor_post_detail','question_detail','answer_detail' ,'question_answer_detail','article_detail') THEN page.cl_id else NULL END) as referrer_search_neirong_pv ,count(DISTINCT CASE WHEN referrer in ('search_result_diary','search_result_doctor','search_result_hospital','search_result_more' ,'search_result_more_infomation','search_result_more_user','search_result_post','search_result_welfare' ,'search_result_wiki','search_result_question_answer') and page_name in ('diary_detail','topic_detail','post_detail','user_post_detail','doctor_post_detail','question_detail','answer_detail' ,'question_answer_detail','article_detail') and page_stay >= '0' and page_stay < '1000' THEN page.cl_id else NULL END) as referrer_search_neirong_uv_1000 ,sum(CASE WHEN referrer in ('search_result_diary','search_result_doctor','search_result_hospital','search_result_more' ,'search_result_more_infomation','search_result_more_user','search_result_post','search_result_welfare' ,'search_result_wiki','search_result_question_answer') and page_name in ('diary_detail','topic_detail','post_detail','user_post_detail','doctor_post_detail','question_detail','answer_detail' ,'question_answer_detail','article_detail') and page_stay >= '0' and page_stay < '1000' THEN page.page_stay else NULL END) as referrer_search_neirong_pagestay FROM ( SELECT cl_id,partition_date,page_name,params['referrer'] as referrer,page_stay FROM online.bl_hdfs_maidian_updates WHERE partition_date >= '{start_date}' AND partition_date < '{end_date}' AND action='page_view' AND page_name in ('search_home','search_home_more','search_home_welfare','search_home_diary','search_home_wiki','search_home_post','search_home_hospital','search_home_doctor' ,'diary_detail','topic_detail','post_detail','user_post_detail','doctor_post_detail','question_detail','answer_detail' ,'question_answer_detail','article_detail','welfare_detail','organization_detail','expert_detail','level_one_plan_detail') )page JOIN ( SELECT partition_date,device_id,t2.active_type,t2.channel,t2.device_os_type FROM ( SELECT partition_date,m.device_id ,array(device_os_type ,'合计') as device_os_type ,array(case WHEN active_type = '4' THEN '老活' WHEN active_type in ('1','2') then '新增' END ,'合计') as active_type ,array(CASE WHEN is_ai_channel = 'true' THEN 'AI' ELSE '其他' END , '合计') as channel FROM online.ml_device_day_active_status m LEFT JOIN (SELECT code,is_ai_channel,partition_day FROM DIM.DIM_AI_CHANNEL_ZP_NEW WHERE partition_day>= '{start_date}' AND partition_day < '{end_date}' ) tmp ON m.partition_date=tmp.partition_day AND first_channel_source_type=code where partition_date >= '{start_date}' AND partition_date < '{end_date}' AND active_type in ('1','2','4') ) mas LATERAL VIEW explode(mas.channel) t2 AS channel LATERAL VIEW explode(mas.device_os_type) t2 AS device_os_type LATERAL VIEW explode(mas.active_type) t2 AS active_type )dev_channel on dev_channel.device_id = page.cl_id AND dev_channel.partition_date = page.partition_date GROUP BY page.partition_date """.format(partition_day=yesterday_str, end_date=today_str, start_date=yesterday_str) print(bus_detail_sql) bus_detail_df = spark.sql(bus_detail_sql) bus_detail_df.createOrReplaceTempView("bus_detail") bus_detail_df.show(1) sql_res = bus_detail_df.collect() for res in sql_res: search_home_pv = res.search_home_pv search_home_uv = res.search_home_uv referrer_search_hexin_pv = res.referrer_search_hexin_pv referrer_search_welfare_pv = res.referrer_search_welfare_pv referrer_search_neirong_pv = res.referrer_search_neirong_pv referrer_search_neirong_uv_1000 = res.referrer_search_neirong_uv_1000 referrer_search_neirong_pagestay = res.referrer_search_neirong_pagestay # print(res) # --cpc当日预算(有效口径) cpc_budget_sql = r""" SELECT day_id,sum(budget) as budget FROM ( SELECT T1.day_id,T1.merchant_doctor_id,case when merchant_budget>=tot_service_budget then tot_service_budget else merchant_budget end as budget FROM ( SELECT substr(clicklog.create_time,1,10) AS day_id ,clicklog.merchant_doctor_id ,max(merchant_budget) as merchant_budget --商户预算 FROM ( SELECT id,promote_id,price,service_budget,merchant_budget,merchant_doctor_id,create_time,recharge FROM online.tl_hdfs_cpc_clicklog_view WHERE partition_date='{partition_date}' AND regexp_replace(substr(create_time,1,10),'-','')>= '{start_date}' AND regexp_replace(substr(create_time,1,10),'-','')<'{end_date}' )clicklog group by substr(clicklog.create_time,1,10),clicklog.merchant_doctor_id )T1 LEFT JOIN ( SELECT day_id ,merchant_doctor_id ,sum(service_budget) as tot_service_budget FROM ( SELECT substr(clicklog.create_time,1,10) AS day_id ,clicklog.merchant_doctor_id,clicklog.service_id ,max(service_budget) as service_budget FROM ( SELECT id,promote_id,price,service_budget,merchant_budget,merchant_doctor_id,service_id,create_time FROM online.tl_hdfs_cpc_clicklog_view WHERE partition_date='{partition_date}' AND regexp_replace(substr(create_time,1,10),'-','')>= '{start_date}' AND regexp_replace(substr(create_time,1,10),'-','')<'{end_date}' )clicklog GROUP BY substr(clicklog.create_time,1,10),clicklog.merchant_doctor_id,clicklog.service_id )service_budget GROUP BY day_id,merchant_doctor_id )T2 ON T1.day_id=T2.day_id AND T1.merchant_doctor_id=T2.merchant_doctor_id )T GROUP BY day_id """.format(partition_date=yesterday_str, end_date=today_str, start_date=yesterday_str) print(cpc_budget_sql) cpc_budget_df = spark.sql(cpc_budget_sql) cpc_budget_df.createOrReplaceTempView("cpc_budget") cpc_budget_df.show(1) sql_res = cpc_budget_df.collect() for res in sql_res: budget = res.budget print(res) # cpc收入、广告总消耗 cpc_income_sql = r""" select partition_day, sum(case when advertise_type = 'cpc' AND advertise_business_type in('service') and advertise_calculate_type='cpc_log' then cpc_click_num end) cpc_click_num,--- 当天cpc商品点击量 sum(case when advertise_type = 'cpc' AND advertise_business_type in('service') and advertise_calculate_type='cpc_flownext' then proportion_expend_amount end) cpc_proportion_expend_amount,--- 当天cpc总收入(含返点) sum(case when advertise_type = 'cpc' AND advertise_business_type in('service') and advertise_calculate_type='cpc_flownext' then proportion_expend_recharge_amount end) cpc_proportion_expend_recharge_amount,--- 当天cpc收入(不含返点) SUM(CASE WHEN advertise_type = 'cpc' AND advertise_calculate_type = 'cpc_flownext' THEN proportion_expend_amount WHEN advertise_type = 'cpt' AND advertise_calculate_type = 'cpt_schedule' THEN proportion_expend_amount WHEN advertise_type IN ('browse', 'message', 'valueadded','rechargededuction') THEN proportion_expend_amount WHEN advertise_type = 'adjustment' AND advertise_calculate_type ='adjustment_flow' THEN proportion_expend_amount ELSE 0 END) tol_proportion_expend_amount --等比例返点消耗总金额 from ml.ml_c_ct_mc_merchantadclassify_indic_d where partition_day>='{start_date}' AND partition_day <'{end_date}' group by partition_day """.format(partition_day=yesterday_str, end_date=today_str, start_date=yesterday_str) print(cpc_income_sql) cpc_income_df = spark.sql(cpc_income_sql) cpc_income_df.createOrReplaceTempView("cpc_income") cpc_income_df.show(1) sql_res = cpc_income_df.collect() for res in sql_res: cpc_click_num = res.cpc_click_num cpc_proportion_expend_amount = res.cpc_proportion_expend_amount cpc_proportion_expend_recharge_amount = res.cpc_proportion_expend_recharge_amount tol_proportion_expend_amount = res.tol_proportion_expend_amount print(res) # # out_put_sql = """ # select bus_detail.referrer_search_welfare_pv / dau_view.dau as pv_div_dau, # bus_detail.referrer_search_welfare_pv / quanzhong_dau_view.quanzhong_dau as pv_div_quanzhong_dau, # (cpc_income.cpt_click_num + cpc_income.cpc_click_num) / bus_detail.referrer_search_welfare_pv as ad_flow_rat, # cpc_income.cpc_proportion_expend_amount/cpc_budget.budget as budget_consumption_rate, # cpc_income.cpc_proportion_expend_recharge_amount/cpc_income.cpc_click_num as cpc_item_pricing, # cpc_income.tol_proportion_expend_amount as tol_proportion_expend_amount # """ print(referrer_search_welfare_pv,welfare_pv) pv_div_dau = welfare_pv/dau pv_div_quanzhong_dau = welfare_pv/quanzhong_dau search_pv_div_all_pv = referrer_search_welfare_pv / welfare_pv ad_flow_rat = (pv + cpc_click_num) / welfare_pv budget_consumption_rate = cpc_proportion_expend_amount/budget cpc_item_pricing = cpc_proportion_expend_recharge_amount/cpc_click_num cpc_flow_rat = cpc_click_num / welfare_pv # tol_proportion_expend_amount db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy', db='jerry_prod') cursor = db.cursor() partition_date = yesterday_str pid = hashlib.md5(partition_date.encode("utf8")).hexdigest() cpc_daily_click_sql = """replace into ecommerce_income_report( pv_div_dau,pv_div_quanzhong_dau,ad_flow_rat,budget_consumption_rate,cpc_item_pricing,tol_proportion_expend_amount,partition_day,day_id,pid,search_pv_div_all_pv,cpc_flow_rat) VALUES( {pv_div_dau},{pv_div_quanzhong_dau},{ad_flow_rat},{budget_consumption_rate},{cpc_item_pricing},{tol_proportion_expend_amount},'{partition_day}','{day_id}','{pid}',{search_pv_div_all_pv},{cpc_flow_rat});""".format( pv_div_dau=pv_div_dau,pv_div_quanzhong_dau=pv_div_quanzhong_dau,ad_flow_rat=ad_flow_rat,budget_consumption_rate=budget_consumption_rate, cpc_item_pricing=cpc_item_pricing,tol_proportion_expend_amount=tol_proportion_expend_amount,partition_day=today_str,search_pv_div_all_pv=search_pv_div_all_pv, day_id=today_str,pid=pid,cpc_flow_rat=cpc_flow_rat ) print(cpc_daily_click_sql) # cursor.execute("set names 'UTF8'") res = cursor.execute(cpc_daily_click_sql) db.commit() print(res) # cursor.executemany() db.close()