# -*- coding:UTF-8 -*- # @Time : 2020/9/9 17:16 # @File : func_get_pv_card_id.py # @email : litao@igengmei.com # @author : litao import hashlib import json import pymysql import xlwt, datetime import redis # from pyhive import hive from maintenance.func_send_email_with_file import send_file_email from typing import Dict, List from elasticsearch_7 import Elasticsearch from elasticsearch_7.helpers import scan import sys import time from pyspark import SparkConf from pyspark.sql import SparkSession, DataFrame # from pyspark.sql.functions import lit # import pytispark.pytispark as pti def get_card_id(): startTime = time.time() sparkConf = SparkConf() sparkConf.set("spark.sql.crossJoin.enabled", True) sparkConf.set("spark.debug.maxToStringFields", "100") sparkConf.set("spark.tispark.plan.allow_index_double_read", False) sparkConf.set("spark.tispark.plan.allow_index_read", True) sparkConf.set("spark.hive.mapred.supports.subdirectories", True) sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True) sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") sparkConf.set("mapreduce.output.fileoutputformat.compress", False) sparkConf.set("mapreduce.map.output.compress", False) sparkConf.set("prod.gold.jdbcuri", "jdbc:mysql://172.16.30.136/doris_prod?user=doris&password=o5gbA27hXHHm&rewriteBatchedStatements=true") sparkConf.set("prod.mimas.jdbcuri", "jdbc:mysql://172.16.30.138/mimas_prod?user=mimas&password=GJL3UJe1Ck9ggL6aKnZCq4cRvM&rewriteBatchedStatements=true") sparkConf.set("prod.gaia.jdbcuri", "jdbc:mysql://172.16.30.143/zhengxing?user=work&password=BJQaT9VzDcuPBqkd&rewriteBatchedStatements=true") sparkConf.set("prod.tidb.jdbcuri", "jdbc:mysql://172.16.40.158:4000/eagle?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true") sparkConf.set("prod.jerry.jdbcuri", "jdbc:mysql://172.16.40.158:4000/jerry_prod?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true") sparkConf.set("prod.tispark.pd.addresses", "172.16.40.158:2379") sparkConf.set("prod.tispark.pd.addresses", "172.16.40.170:4000") sparkConf.set("prod.tidb.database", "jerry_prod") spark = ( SparkSession.builder.config(conf=sparkConf).config("spark.sql.extensions", "org.apache.spark.sql.TiExtensions") .config("spark.tispark.pd.addresses", "172.16.40.170:2379").appName( "LR PYSPARK TEST").enableHiveSupport().getOrCreate()) spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/brickhouse-0.7.1-SNAPSHOT.jar") spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/hive-udf-1.0-SNAPSHOT.jar") spark.sql("CREATE TEMPORARY FUNCTION json_map AS 'brickhouse.udf.json.JsonMapUDF'") spark.sql("CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJsonFormatCheck'") spark.sql("CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'") task_list = [] task_days = 2 for t in range(1, task_days): day_num = 0 - t now = (datetime.datetime.now() + datetime.timedelta(days=day_num)) last_30_day_str = (now + datetime.timedelta(days=-30)).strftime("%Y%m%d") today_str = now.strftime("%Y%m%d") yesterday_str = (now + datetime.timedelta(days=-1)).strftime("%Y%m%d") one_week_age_str = (now + datetime.timedelta(days=-3)).strftime("%Y%m%d") sql = r""" SELECT * FROM (--精准曝光,卡片id和session_id去重 SELECT partition_date, card_content_type, cl_id, recommend_type, card_id FROM ( SELECT partition_date, cl_id, case when card_content_type in ('qa','answer') then 'qa' else card_content_type end as card_content_type, CASE when transaction_type in ('fmctr') then 'fmctr' WHEN transaction_type like '%ctr' THEN 'ctr预估' WHEN transaction_type like '%cvr' THEN 'cvr预估' WHEN transaction_type in ('-1','smr') THEN 'smr' when transaction_type in ('pgc','hotspot') then '热点卡片' when transaction_type in ('newdata') then '保量卡片' when transaction_type in ('hotspot_feed') then 'hotspot_feed' END AS recommend_type, card_id, app_session_id from online.ml_community_precise_exposure_detail WHERE partition_date='{partition_day}' AND action in ('page_precise_exposure','home_choiceness_card_exposure') --7745版本action改为page_precise_exposure AND is_exposure = '1' ----精准曝光 AND page_name ='home' AND tab_name = '精选' AND (transaction_type in ('-1','smr','hotspot','pgc','newdata','hotspot_feed') or transaction_type like '%ctr' or transaction_type like '%cvr') AND card_content_type in ('qa','diary','user_post','answer') group by partition_date, case when card_content_type in ('qa','answer') then 'qa' else card_content_type end, cl_id, CASE when transaction_type in ('fmctr') then 'fmctr' WHEN transaction_type like '%ctr' THEN 'ctr预估' WHEN transaction_type like '%cvr' THEN 'cvr预估' WHEN transaction_type in ('-1','smr') THEN 'smr' when transaction_type in ('pgc','hotspot') then '热点卡片' when transaction_type in ('newdata') then '保量卡片' when transaction_type in ('hotspot_feed') then 'hotspot_feed' END, card_id, app_session_id )a group by partition_date,card_content_type,cl_id,recommend_type,card_id )t2 LEFT JOIN ( select distinct device_id from ml.ml_d_ct_dv_devicespam_d --去除机构刷单设备,即作弊设备(浏览和曝光事件去除) WHERE partition_day='{partition_day}' union all select distinct device_id from dim.dim_device_user_staff --去除内网用户 )spam_pv on spam_pv.device_id=t2.cl_id LEFT JOIN ( SELECT partition_date,device_id FROM (--找出user_id当天活跃的第一个设备id SELECT user_id,partition_date, if(size(device_list) > 0, device_list [ 0 ], '') AS device_id FROM online.ml_user_updates WHERE partition_date='{partition_day}' )t1 JOIN ( --医生账号 SELECT distinct user_id FROM online.tl_hdfs_doctor_view WHERE partition_date = '{partition_day}' --马甲账号/模特用户 UNION ALL SELECT user_id FROM ml.ml_c_ct_ui_user_dimen_d WHERE partition_day = '{partition_day}' AND (is_puppet = 'true' or is_classifyuser = 'true') UNION ALL --公司内网覆盖用户 select distinct user_id from dim.dim_device_user_staff UNION ALL --登陆过医生设备 SELECT distinct t1.user_id FROM ( SELECT user_id, v.device_id as device_id FROM online.ml_user_history_detail LATERAL VIEW EXPLODE(device_history_list) v AS device_id WHERE partition_date = '{partition_day}' ) t1 JOIN ( SELECT device_id FROM online.ml_device_history_detail WHERE partition_date = '{partition_day}' AND is_login_doctor = '1' ) t2 ON t1.device_id = t2.device_id )t2 on t1.user_id=t2.user_id group by partition_date,device_id )dev on t2.partition_date=dev.partition_date and t2.cl_id=dev.device_id WHERE spam_pv.device_id IS NULL and dev.device_id is null """.format(partition_day=yesterday_str) device_df = spark.sql(sql) device_df.show(1, False) sql_res = device_df.collect() res_dict = { "diary": [], "user_post": [], "qa": [] } for res in sql_res: # print(res) card_content_type = res.card_content_type card_id = res.card_id if card_content_type in res_dict: res_dict[card_content_type].append(card_id) return res_dict