# -*- coding:UTF-8 -*- # @Time : 2020/9/16 17:41 # @File : new_user_has_protratit_rate.py # @email : litao@igengmei.com # @author : litao import hashlib import json import pymysql import xlwt, datetime import redis # from pyhive import hive from maintenance.func_send_email_with_file import send_file_email from typing import Dict, List from elasticsearch_7 import Elasticsearch from elasticsearch_7.helpers import scan import sys import time from pyspark import SparkConf from pyspark.sql import SparkSession, DataFrame from meta_base_code.utils.func_from_redis_get_portrait import * # from pyspark.sql.functions import lit # import pytispark.pytispark as pti def con_sql(sql): # 从数据库的表里获取数据 # db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy', # db='jerry_prod') db = pymysql.connect(host='172.16.30.136', port=3306, user='doris', passwd='o5gbA27hXHHm', db='doris_prod') cursor = db.cursor() cursor.execute(sql) result = cursor.fetchall() db.close() return result startTime = time.time() sparkConf = SparkConf() sparkConf.set("spark.sql.crossJoin.enabled", True) sparkConf.set("spark.debug.maxToStringFields", "100") sparkConf.set("spark.tispark.plan.allow_index_double_read", False) sparkConf.set("spark.tispark.plan.allow_index_read", True) sparkConf.set("spark.hive.mapred.supports.subdirectories", True) sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True) sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") sparkConf.set("mapreduce.output.fileoutputformat.compress", False) sparkConf.set("mapreduce.map.output.compress", False) sparkConf.set("prod.gold.jdbcuri", "jdbc:mysql://172.16.30.136/doris_prod?user=doris&password=o5gbA27hXHHm&rewriteBatchedStatements=true") sparkConf.set("prod.mimas.jdbcuri", "jdbc:mysql://172.16.30.138/mimas_prod?user=mimas&password=GJL3UJe1Ck9ggL6aKnZCq4cRvM&rewriteBatchedStatements=true") sparkConf.set("prod.gaia.jdbcuri", "jdbc:mysql://172.16.30.143/zhengxing?user=work&password=BJQaT9VzDcuPBqkd&rewriteBatchedStatements=true") sparkConf.set("prod.tidb.jdbcuri", "jdbc:mysql://172.16.40.158:4000/eagle?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true") sparkConf.set("prod.jerry.jdbcuri", "jdbc:mysql://172.16.40.158:4000/jerry_prod?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true") sparkConf.set("prod.tispark.pd.addresses", "172.16.40.158:2379") sparkConf.set("prod.tispark.pd.addresses", "172.16.40.170:4000") sparkConf.set("prod.tidb.database", "jerry_prod") sparkConf.setAppName("new_user_has_protratit_rate") spark = (SparkSession.builder.config(conf=sparkConf).config("spark.sql.extensions", "org.apache.spark.sql.TiExtensions") .config("spark.tispark.pd.addresses", "172.16.40.170:2379").enableHiveSupport().getOrCreate()) spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/brickhouse-0.7.1-SNAPSHOT.jar") spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/hive-udf-1.0-SNAPSHOT.jar") spark.sql("CREATE TEMPORARY FUNCTION json_map AS 'brickhouse.udf.json.JsonMapUDF'") spark.sql("CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJsonFormatCheck'") spark.sql("CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'") task_list = [] task_days = 3 for t in range(2, task_days): day_num = 0 - t now = (datetime.datetime.now() + datetime.timedelta(days=day_num)) last_30_day_str = (now + datetime.timedelta(days=-30)).strftime("%Y%m%d") tomorrow_str = (datetime.datetime.now() + datetime.timedelta(days=day_num+1)).strftime("%Y%m%d") today_str = now.strftime("%Y%m%d") today_str_format = now.strftime("%Y-%m-%d") yesterday_str = (now + datetime.timedelta(days=-1)).strftime("%Y%m%d") yesterday_str_format = (now + datetime.timedelta(days=-1)).strftime("%Y-%m-%d") one_week_age_str = (now + datetime.timedelta(days=-7)).strftime("%Y%m%d") new_urser_device_id_sql = r""" select t2.device_id as device_id from (select device_id from online.ml_device_day_active_status where partition_date = '{today_str}' and active_type in (1,2)) t2 LEFT join ( select first_device from online.ml_user_history_detail where partition_date = '{tomorrow_str}' and last_active_date = '{today_str}' ) on first_device = t2.device_id LEFT JOIN ( select distinct device_id from ml.ml_d_ct_dv_devicespam_d --去除机构刷单设备,即作弊设备(浏览和曝光事件去除) WHERE partition_day='{today_str}' union all select distinct device_id from dim.dim_device_user_staff --去除内网用户 )spam_pv on spam_pv.device_id=t2.device_id LEFT JOIN ( SELECT partition_date,device_id FROM (--找出user_id当天活跃的第一个设备id SELECT user_id,partition_date, if(size(device_list) > 0, device_list [ 0 ], '') AS device_id FROM online.ml_user_updates WHERE partition_date='{today_str}' )t1 JOIN ( --医生账号 SELECT distinct user_id FROM online.tl_hdfs_doctor_view WHERE partition_date = '{today_str}' --马甲账号/模特用户 UNION ALL SELECT user_id FROM ml.ml_c_ct_ui_user_dimen_d WHERE partition_day = '{today_str}' AND (is_puppet = 'true' or is_classifyuser = 'true') UNION ALL --公司内网覆盖用户 select distinct user_id from dim.dim_device_user_staff UNION ALL --登陆过医生设备 SELECT distinct t1.user_id FROM ( SELECT user_id, v.device_id as device_id FROM online.ml_user_history_detail LATERAL VIEW EXPLODE(device_history_list) v AS device_id WHERE partition_date = '{today_str}' ) t1 JOIN ( SELECT device_id FROM online.ml_device_history_detail WHERE partition_date = '{today_str}' AND is_login_doctor = '1' ) t2 ON t1.device_id = t2.device_id )t2 on t1.user_id=t2.user_id group by partition_date,device_id )dev on t2.device_id=dev.device_id WHERE spam_pv.device_id IS NULL and dev.device_id is null and first_device is not null """.format(today_str=today_str, yesterday_str_format=yesterday_str_format, today_str_format=today_str_format,tomorrow_str=tomorrow_str) print(new_urser_device_id_sql) new_urser_device_id_df = spark.sql(new_urser_device_id_sql) new_urser_device_id_df.createOrReplaceTempView("device_id_view") new_urser_device_id_df.show(1) sql_res = new_urser_device_id_df.collect() res_dict = {} portrait_dict = { "first_demands": {}, "second_demands": {}, "first_solutions": {}, "second_solutions": {}, "first_positions": {}, "second_positions": {}, "projects": {}, 'anecdote_tags':{} } no_portrait_device_id_list = [] print("-------------------------------") count_not_has_portratit = 0 for count_user_count, res in enumerate(sql_res): # print(count, res) portratit_res = get_user_portrait_tag3_from_redis(res.device_id) sql = """select cl_id, projects from kafka_tag3_log where cl_id = '%s' and event_cn = 'kyc' """ % res.device_id # print(count_user_count, res, portratit_res) sql_res_list = con_sql(sql) kyc_str_list= [] if sql_res_list: print(sql_res_list,type(sql_res_list)) kyc_str_list = sql_res_list[0][1].split(",") temp_count = 0 for demand in portratit_res: if portratit_res[demand]: try: for tag in portratit_res[demand][0:3]: if tag in portrait_dict[demand]: portrait_dict[demand][tag] += 1 else: portrait_dict[demand][tag] = 1 if tag in kyc_str_list and demand == "projects": if portrait_dict["projects"].get(tag): portrait_dict["projects"][tag] -= 1 except Exception as e: print("error ", e) temp_count += 1 if not temp_count: count_not_has_portratit += 1 no_portrait_device_id_list.append(res.device_id) print(portrait_dict) print(count_user_count+1,count_not_has_portratit) print("-------------------------------") for protratit_type in portrait_dict["projects"]: partition_date = today_str pid = hashlib.md5((partition_date + protratit_type).encode("utf8")).hexdigest() action_count = portrait_dict["projects"][protratit_type] instert_sql = """replace into new_user_project_count( partition_day,pid,protratit_count,protratit_type) VALUES('{partition_day}','{pid}',{protratit_count},'{protratit_type}');""".format( partition_day=today_str, pid=pid, protratit_count=action_count , protratit_type=protratit_type ) print(instert_sql) # cursor.execute("set names 'UTF8'") db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy', db='jerry_prod') cursor = db.cursor() res = cursor.execute(instert_sql) db.commit() print(res)