# -*- coding:UTF-8 -*-
# @Time  : 2020/9/4 17:07
# @File  : search_meigou_ctr.py
# @email : litao@igengmei.com
# @author : litao

import hashlib
import json

import pymysql
import xlwt, datetime
import redis
# from pyhive import hive
from maintenance.func_send_email_with_file import send_file_email
from typing import Dict, List
from elasticsearch_7 import Elasticsearch
from elasticsearch_7.helpers import scan
import sys
import time
from pyspark import SparkConf
from pyspark.sql import SparkSession, DataFrame


# from pyspark.sql.functions import lit
# import pytispark.pytispark as pti


def con_sql(sql):
    # 从数据库的表里获取数据

    db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy',
                         db='jerry_prod')
    cursor = db.cursor()
    cursor.execute(sql)
    result = cursor.fetchall()
    db.close()
    return result


startTime = time.time()
sparkConf = SparkConf()
sparkConf.set("spark.sql.crossJoin.enabled", True)
sparkConf.set("spark.debug.maxToStringFields", "100")
sparkConf.set("spark.tispark.plan.allow_index_double_read", False)
sparkConf.set("spark.tispark.plan.allow_index_read", True)
sparkConf.set("spark.hive.mapred.supports.subdirectories", True)
sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True)
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
sparkConf.set("mapreduce.output.fileoutputformat.compress", False)
sparkConf.set("mapreduce.map.output.compress", False)
sparkConf.set("prod.gold.jdbcuri",
              "jdbc:mysql://172.16.30.136/doris_prod?user=doris&password=o5gbA27hXHHm&rewriteBatchedStatements=true")
sparkConf.set("prod.mimas.jdbcuri",
              "jdbc:mysql://172.16.30.138/mimas_prod?user=mimas&password=GJL3UJe1Ck9ggL6aKnZCq4cRvM&rewriteBatchedStatements=true")
sparkConf.set("prod.gaia.jdbcuri",
              "jdbc:mysql://172.16.30.143/zhengxing?user=work&password=BJQaT9VzDcuPBqkd&rewriteBatchedStatements=true")
sparkConf.set("prod.tidb.jdbcuri",
              "jdbc:mysql://172.16.40.158:4000/eagle?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true")
sparkConf.set("prod.jerry.jdbcuri",
              "jdbc:mysql://172.16.40.158:4000/jerry_prod?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true")
sparkConf.set("prod.tispark.pd.addresses", "172.16.40.158:2379")
sparkConf.set("prod.tispark.pd.addresses", "172.16.40.170:4000")
sparkConf.set("prod.tidb.database", "jerry_prod")
sparkConf.setAppName("search_tractate_ctr")

spark = (SparkSession.builder.config(conf=sparkConf).config("spark.sql.extensions", "org.apache.spark.sql.TiExtensions")
         .config("spark.tispark.pd.addresses", "172.16.40.170:2379").enableHiveSupport().getOrCreate())

spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/brickhouse-0.7.1-SNAPSHOT.jar")
spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/hive-udf-1.0-SNAPSHOT.jar")
spark.sql("CREATE TEMPORARY FUNCTION json_map AS 'brickhouse.udf.json.JsonMapUDF'")
spark.sql("CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJsonFormatCheck'")
spark.sql("CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'")

task_list = []
task_days = 60
for t in range(1, task_days):
    day_num = 0 - t
    now = (datetime.datetime.now() + datetime.timedelta(days=day_num))
    last_30_day_str = (now + datetime.timedelta(days=-30)).strftime("%Y%m%d")
    today_str = now.strftime("%Y%m%d")
    yesterday_str = (now + datetime.timedelta(days=-1)).strftime("%Y%m%d")
    one_week_age_str = (now + datetime.timedelta(days=-7)).strftime("%Y%m%d")

    sql_search_ctr = r"""
    select D.ACTIVE_TYPE,D.DEVICE_OS_TYPE,sum(T.CLICK_NUM) as CLICK_NUM,sum(C.EXPOSURE) as EXPOSURE from
(SELECT T.DEVICE_ID, --设备ID
      T.CARD_ID, --卡片ID
      SUM(T.CLICK_NUM) AS CLICK_NUM --点击次数
  FROM ML.ML_C_ET_CK_CLICK_DIMEN_D T
 WHERE T.PARTITION_DAY = '{partition_day}'
  AND T.PAGE_CODE = 'search_result_post'
  AND T.ACTION IN ('search_result_click_infomation_item','on_click_topic_card')
 GROUP BY T.DEVICE_ID,
          T.CARD_ID) T

left join 
 (SELECT T.DEVICE_ID as DEVICE_ID, --设备ID
        T.CARD_ID as CARD_ID, --卡片ID
        COUNT(T.CARD_ID) AS EXPOSURE --点击次数
  FROM ML.MID_ML_C_ET_PE_PRECISEEXPOSURE_DIMEN_D T
  WHERE T.PARTITION_DAY = '{partition_day}'
    AND T.PAGE_CODE = 'search_result_post'
  GROUP BY T.DEVICE_ID,
          T.CARD_ID) C on T.DEVICE_ID=C.DEVICE_ID and T.CARD_ID = C.CARD_ID 
          LEFT JOIN
          ( 
    SELECT T.DEVICE_ID,
       T.DEVICE_OS_TYPE,
       T.ACTIVE_TYPE
  FROM ML.ML_C_CT_DV_DEVICE_DIMEN_D T
 WHERE T.PARTITION_DAY = '{partition_day}'
   AND T.ACTIVE_TYPE IN ('1', '2', '4'))
    D on T.DEVICE_ID =  D.DEVICE_ID 
        LEFT JOIN
(
    SELECT DISTINCT device_id
    FROM ml.ml_d_ct_dv_devicespam_d  --去除机构刷单设备,即作弊设备(浏览和曝光事件去除)
    WHERE partition_day='{partition_day}'

    UNION ALL 
    SELECT DISTINCT device_id
    FROM dim.dim_device_user_staff   --去除内网用户
)spam_pv
on spam_pv.device_id=T.DEVICE_ID
LEFT JOIN
(
	SELECT partition_date,device_id
	FROM 
	(--找出user_id当天活跃的第一个设备id
	    SELECT user_id,partition_date,
	            if(size(device_list) > 0, device_list [ 0 ], '') AS device_id
	      FROM online.ml_user_updates
	      WHERE partition_date>='{partition_day}' AND partition_date<'{end_date}'
	)t1
	JOIN
	(  --医生账号
	    SELECT distinct user_id
	    FROM online.tl_hdfs_doctor_view
	    WHERE partition_date = '{partition_day}'

	    --马甲账号/模特用户
	    UNION ALL
	    SELECT user_id
	    FROM ml.ml_c_ct_ui_user_dimen_d
	    WHERE partition_day = '{partition_day}'
	    AND (is_puppet = 'true' or is_classifyuser = 'true')

	    UNION ALL
	    --公司内网覆盖用户
	    select distinct user_id
	    from dim.dim_device_user_staff

	    UNION ALL
	    --登陆过医生设备
	    SELECT distinct t1.user_id
	    FROM
	    (
	        SELECT user_id, v.device_id as device_id
	        FROM online.ml_user_history_detail
	            LATERAL VIEW EXPLODE(device_history_list) v AS device_id
	        WHERE partition_date = '{partition_day}'
	    )t1
	    JOIN
	    (
	        SELECT device_id
	        FROM online.ml_device_history_detail
	        WHERE partition_date = '{partition_day}'
	        AND is_login_doctor = '1'
	    )t2
	        ON t1.device_id = t2.device_id
	)t2
	on t1.user_id=t2.user_id
	group by partition_date,device_id
)dev 
on T.DEVICE_ID=dev.device_id
WHERE (spam_pv.device_id IS NULL or spam_pv.device_id = '')
and (dev.device_id is null or dev.device_id='')

    GROUP by D.DEVICE_OS_TYPE,
        D.ACTIVE_TYPE
    """.format(partition_day=yesterday_str, end_date=today_str)

    print(sql_search_ctr)
    search_ctr_df = spark.sql(sql_search_ctr)
    # spam_pv_df.createOrReplaceTempView("dev_view")
    search_ctr_df.show(1)
    sql_res = search_ctr_df.collect()
    res_dict = {
        "新增": {
            "ios": {"click_num": 0, "exposure": 0},
            "android": {"click_num": 0, "exposure": 0}
        },
        "老活": {
            "ios": {"click_num": 0, "exposure": 0},
            "android": {"click_num": 0, "exposure": 0}
        }
    }
    print("-------------------------------")
    db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy',
                         db='jerry_prod')
    cursor = db.cursor()
    for res in sql_res:
        print(res)
        if res.ACTIVE_TYPE:
            if res.ACTIVE_TYPE in ('1', '2'):
                if res.CLICK_NUM:
                    res_dict["新增"][res.DEVICE_OS_TYPE]["click_num"] += res.CLICK_NUM
                if res.EXPOSURE:
                    res_dict["新增"][res.DEVICE_OS_TYPE]["exposure"] += res.EXPOSURE
            else:
                if res.CLICK_NUM:
                    res_dict["老活"][res.DEVICE_OS_TYPE]["click_num"] += res.CLICK_NUM
                if res.EXPOSURE:
                    res_dict["老活"][res.DEVICE_OS_TYPE]["exposure"] += res.EXPOSURE
    for active_type in res_dict:
        for device_os_type in res_dict[active_type]:
            partition_date = yesterday_str
            pid = hashlib.md5((partition_date + device_os_type + active_type).encode("utf8")).hexdigest()
            click_num = res_dict[active_type][device_os_type]["click_num"]
            exposure = res_dict[active_type][device_os_type]["exposure"]
            try:
                search_ctr = round(click_num / exposure, 5)
            except:
                search_ctr = 0
            instert_sql = """replace into search_tractate_ctr(
            partition_date,device_os_type,active_type,pid,click_num,exposure,search_ctr) VALUES('{partition_date}','{device_os_type}','{active_type}','{pid}',{click_num},{exposure},{search_ctr});""".format(
                partition_date=partition_date, device_os_type=device_os_type, active_type=active_type, pid=pid, click_num=click_num,
                exposure=exposure, search_ctr=search_ctr
            )
            print(instert_sql)
            # cursor.execute("set names 'UTF8'")
            res = cursor.execute(instert_sql)
            db.commit()
            print(res)
# cursor.executemany()
db.close()