Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
0fe68bb5
Commit
0fe68bb5
authored
Jun 07, 2018
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added auto_train_rbf_classifier() and reduced() to the Python API.
parent
2a27b690
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
355 additions
and
0 deletions
+355
-0
decision_functions.cpp
tools/python/src/decision_functions.cpp
+355
-0
No files found.
tools/python/src/decision_functions.cpp
View file @
0fe68bb5
...
@@ -5,6 +5,7 @@
...
@@ -5,6 +5,7 @@
#include <dlib/python.h>
#include <dlib/python.h>
#include "testing_results.h"
#include "testing_results.h"
#include <dlib/svm.h>
#include <dlib/svm.h>
#include <chrono>
using
namespace
dlib
;
using
namespace
dlib
;
using
namespace
std
;
using
namespace
std
;
...
@@ -14,6 +15,49 @@ namespace py = pybind11;
...
@@ -14,6 +15,49 @@ namespace py = pybind11;
typedef
matrix
<
double
,
0
,
1
>
sample_type
;
typedef
matrix
<
double
,
0
,
1
>
sample_type
;
typedef
std
::
vector
<
std
::
pair
<
unsigned
long
,
double
>
>
sparse_vect
;
typedef
std
::
vector
<
std
::
pair
<
unsigned
long
,
double
>
>
sparse_vect
;
void
np_to_cpp
(
const
numpy_image
<
double
>&
x_
,
std
::
vector
<
matrix
<
double
,
0
,
1
>>&
samples
)
{
auto
x
=
make_image_view
(
x_
);
DLIB_CASSERT
(
x
.
nc
()
>
0
);
DLIB_CASSERT
(
x
.
nr
()
>
0
);
samples
.
resize
(
x
.
nr
());
for
(
long
r
=
0
;
r
<
x
.
nr
();
++
r
)
{
samples
[
r
].
set_size
(
x
.
nc
());
for
(
long
c
=
0
;
c
<
x
.
nc
();
++
c
)
{
samples
[
r
](
c
)
=
x
[
r
][
c
];
}
}
}
void
np_to_cpp
(
const
numpy_image
<
double
>&
x_
,
const
py
::
array_t
<
double
>&
y
,
std
::
vector
<
matrix
<
double
,
0
,
1
>>&
samples
,
std
::
vector
<
double
>&
labels
)
{
DLIB_CASSERT
(
y
.
ndim
()
==
1
&&
y
.
size
()
>
0
);
labels
.
assign
(
y
.
data
(),
y
.
data
()
+
y
.
size
());
auto
x
=
make_image_view
(
x_
);
DLIB_CASSERT
(
x
.
nr
()
==
y
.
size
(),
"The x matrix must have as many rows as y has elements."
);
DLIB_CASSERT
(
x
.
nc
()
>
0
);
samples
.
resize
(
x
.
nr
());
for
(
long
r
=
0
;
r
<
x
.
nr
();
++
r
)
{
samples
[
r
].
set_size
(
x
.
nc
());
for
(
long
c
=
0
;
c
<
x
.
nc
();
++
c
)
{
samples
[
r
](
c
)
=
x
[
r
][
c
];
}
}
}
template
<
typename
decision_function
>
template
<
typename
decision_function
>
double
predict
(
double
predict
(
const
decision_function
&
df
,
const
decision_function
&
df
,
...
@@ -36,6 +80,104 @@ double predict (
...
@@ -36,6 +80,104 @@ double predict (
return
df
(
samp
);
return
df
(
samp
);
}
}
inline
matrix
<
double
,
0
,
1
>
np_to_mat
(
const
py
::
array_t
<
double
>&
samp
)
{
matrix
<
double
,
0
,
1
>
temp
(
samp
.
size
());
const
auto
data
=
samp
.
data
();
for
(
long
i
=
0
;
i
<
temp
.
size
();
++
i
)
temp
(
i
)
=
data
[
i
];
return
temp
;
}
template
<
typename
decision_function
>
double
normalized_predict
(
const
normalized_function
<
decision_function
>&
df
,
const
typename
decision_function
::
kernel_type
::
sample_type
&
samp
)
{
typedef
typename
decision_function
::
kernel_type
::
sample_type
T
;
if
(
df
.
function
.
basis_vectors
.
size
()
==
0
)
{
return
0
;
}
else
if
(
is_matrix
<
T
>::
value
&&
df
.
function
.
basis_vectors
(
0
).
size
()
!=
samp
.
size
())
{
std
::
ostringstream
sout
;
sout
<<
"Input vector should have "
<<
df
.
function
.
basis_vectors
(
0
).
size
()
<<
" dimensions, not "
<<
samp
.
size
()
<<
"."
;
PyErr_SetString
(
PyExc_ValueError
,
sout
.
str
().
c_str
()
);
throw
py
::
error_already_set
();
}
return
df
(
samp
);
}
template
<
typename
decision_function
>
std
::
vector
<
double
>
normalized_predict_vec
(
const
normalized_function
<
decision_function
>&
df
,
const
std
::
vector
<
typename
decision_function
::
kernel_type
::
sample_type
>&
samps
)
{
std
::
vector
<
double
>
out
;
out
.
reserve
(
samps
.
size
());
for
(
auto
&
x
:
samps
)
out
.
push_back
(
normalized_predict
(
df
,
x
));
return
out
;
}
template
<
typename
decision_function
>
py
::
array_t
<
double
>
normalized_predict_np_vec
(
const
normalized_function
<
decision_function
>&
df
,
const
numpy_image
<
double
>&
samps_
)
{
auto
samps
=
make_image_view
(
samps_
);
if
(
df
.
function
.
basis_vectors
(
0
).
size
()
!=
samps
.
nc
())
{
std
::
ostringstream
sout
;
sout
<<
"Input vector should have "
<<
df
.
function
.
basis_vectors
(
0
).
size
()
<<
" dimensions, not "
<<
samps
.
nc
()
<<
"."
;
PyErr_SetString
(
PyExc_ValueError
,
sout
.
str
().
c_str
()
);
throw
py
::
error_already_set
();
}
py
::
array_t
<
double
,
py
::
array
::
c_style
>
out
((
size_t
)
samps
.
nr
());
matrix
<
double
,
0
,
1
>
temp
(
samps
.
nc
());
auto
data
=
out
.
mutable_data
();
for
(
long
r
=
0
;
r
<
samps
.
nr
();
++
r
)
{
for
(
long
c
=
0
;
c
<
samps
.
nc
();
++
c
)
temp
(
c
)
=
samps
[
r
][
c
];
*
data
++
=
df
(
temp
);
}
return
out
;
}
template
<
typename
decision_function
>
double
normalized_predict_np
(
const
normalized_function
<
decision_function
>&
df
,
const
py
::
array_t
<
double
>&
samp
)
{
typedef
typename
decision_function
::
kernel_type
::
sample_type
T
;
if
(
df
.
function
.
basis_vectors
.
size
()
==
0
)
{
return
0
;
}
else
if
(
is_matrix
<
T
>::
value
&&
df
.
function
.
basis_vectors
(
0
).
size
()
!=
samp
.
size
())
{
std
::
ostringstream
sout
;
sout
<<
"Input vector should have "
<<
df
.
function
.
basis_vectors
(
0
).
size
()
<<
" dimensions, not "
<<
samp
.
size
()
<<
"."
;
PyErr_SetString
(
PyExc_ValueError
,
sout
.
str
().
c_str
()
);
throw
py
::
error_already_set
();
}
return
df
(
np_to_mat
(
samp
));
}
template
<
typename
kernel_type
>
template
<
typename
kernel_type
>
void
add_df
(
void
add_df
(
py
::
module
&
m
,
py
::
module
&
m
,
...
@@ -57,6 +199,35 @@ void add_df (
...
@@ -57,6 +199,35 @@ void add_df (
.
def
(
py
::
pickle
(
&
getstate
<
df_type
>
,
&
setstate
<
df_type
>
));
.
def
(
py
::
pickle
(
&
getstate
<
df_type
>
,
&
setstate
<
df_type
>
));
}
}
template
<
typename
kernel_type
>
void
add_normalized_df
(
py
::
module
&
m
,
const
std
::
string
name
)
{
using
df_type
=
normalized_function
<
decision_function
<
kernel_type
>>
;
py
::
class_
<
df_type
>
(
m
,
name
.
c_str
())
.
def
(
"__call__"
,
&
normalized_predict
<
decision_function
<
kernel_type
>>
)
.
def
(
"__call__"
,
&
normalized_predict_np
<
decision_function
<
kernel_type
>>
)
.
def
(
"batch_predict"
,
&
normalized_predict_vec
<
decision_function
<
kernel_type
>>
)
.
def
(
"batch_predict"
,
&
normalized_predict_np_vec
<
decision_function
<
kernel_type
>>
)
.
def_property_readonly
(
"alpha"
,
[](
const
df_type
&
df
)
{
return
df
.
function
.
alpha
;})
.
def_property_readonly
(
"b"
,
[](
const
df_type
&
df
)
{
return
df
.
function
.
b
;})
.
def_property_readonly
(
"kernel_function"
,
[](
const
df_type
&
df
)
{
return
df
.
function
.
kernel_function
;})
.
def_property_readonly
(
"basis_vectors"
,
[](
const
df_type
&
df
)
{
std
::
vector
<
matrix
<
double
,
0
,
1
>>
temp
;
for
(
long
i
=
0
;
i
<
df
.
function
.
basis_vectors
.
size
();
++
i
)
temp
.
push_back
(
sparse_to_dense
(
df
.
function
.
basis_vectors
(
i
)));
return
temp
;
})
.
def_property_readonly
(
"means"
,
[](
const
df_type
&
df
)
{
return
df
.
normalizer
.
means
();},
"Input vectors are normalized by the equation, (x-means)*invstd_devs, before being passed to the underlying RBF function."
)
.
def_property_readonly
(
"invstd_devs"
,
[](
const
df_type
&
df
)
{
return
df
.
normalizer
.
std_devs
();},
"Input vectors are normalized by the equation, (x-means)*invstd_devs, before being passed to the underlying RBF function."
)
.
def
(
py
::
pickle
(
&
getstate
<
df_type
>
,
&
setstate
<
df_type
>
));
}
template
<
typename
df_type
>
template
<
typename
df_type
>
typename
df_type
::
sample_type
get_weights
(
typename
df_type
::
sample_type
get_weights
(
const
df_type
&
df
const
df_type
&
df
...
@@ -157,6 +328,26 @@ std::string ranking_test__repr__(const ranking_test& item) { return "< " + ranki
...
@@ -157,6 +328,26 @@ std::string ranking_test__repr__(const ranking_test& item) { return "< " + ranki
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template
<
typename
K
>
binary_test
_normalized_test_binary_decision_function
(
const
normalized_function
<
decision_function
<
K
>>&
dec_funct
,
const
std
::
vector
<
typename
K
::
sample_type
>&
x_test
,
const
std
::
vector
<
double
>&
y_test
)
{
return
binary_test
(
test_binary_decision_function
(
dec_funct
,
x_test
,
y_test
));
}
template
<
typename
K
>
binary_test
_normalized_test_binary_decision_function_np
(
const
normalized_function
<
decision_function
<
K
>>&
dec_funct
,
const
numpy_image
<
double
>&
x_test_
,
const
py
::
array_t
<
double
>&
y_test_
)
{
std
::
vector
<
typename
K
::
sample_type
>
x_test
;
std
::
vector
<
double
>
y_test
;
np_to_cpp
(
x_test_
,
y_test_
,
x_test
,
y_test
);
return
binary_test
(
test_binary_decision_function
(
dec_funct
,
x_test
,
y_test
));
}
template
<
typename
K
>
template
<
typename
K
>
binary_test
_test_binary_decision_function
(
binary_test
_test_binary_decision_function
(
const
decision_function
<
K
>&
dec_funct
,
const
decision_function
<
K
>&
dec_funct
,
...
@@ -183,6 +374,162 @@ ranking_test _test_ranking_function2 (
...
@@ -183,6 +374,162 @@ ranking_test _test_ranking_function2 (
const
ranking_pair
<
typename
K
::
sample_type
>&
sample
const
ranking_pair
<
typename
K
::
sample_type
>&
sample
)
{
return
ranking_test
(
test_ranking_function
(
funct
,
sample
));
}
)
{
return
ranking_test
(
test_ranking_function
(
funct
,
sample
));
}
// ----------------------------------------------------------------------------------------
void
setup_auto_train_rbf_classifier
(
py
::
module
&
m
)
{
m
.
def
(
"auto_train_rbf_classifier"
,
[](
const
std
::
vector
<
matrix
<
double
,
0
,
1
>>&
x
,
const
std
::
vector
<
double
>&
y
,
double
max_runtime_seconds
,
bool
be_verbose
)
{
return
auto_train_rbf_classifier
(
x
,
y
,
std
::
chrono
::
microseconds
((
uint64_t
)(
max_runtime_seconds
*
1e6
)),
be_verbose
);
},
py
::
arg
(
"x"
),
py
::
arg
(
"y"
),
py
::
arg
(
"max_runtime_seconds"
),
py
::
arg
(
"be_verbose"
)
=
true
,
"requires
\n
\
- y contains at least 6 examples of each class. Moreover, every element in y
\n
\
is either +1 or -1.
\n
\
- max_runtime_seconds >= 0
\n
\
- len(x) == len(y)
\n
\
- all the vectors in x have the same dimension.
\n
\
ensures
\n
\
- This routine trains a radial basis function SVM on the given binary
\n
\
classification training data. It uses the svm_c_trainer to do this. It also
\n
\
uses find_max_global() and 6-fold cross-validation to automatically determine
\n
\
the best settings of the SVM's hyper parameters.
\n
\
- Note that we interpret y[i] as the label for the vector x[i]. Therefore, the
\n
\
returned function, df, should generally satisfy sign(df(x[i])) == y[i] as
\n
\
often as possible.
\n
\
- The hyperparameter search will run for about max_runtime and will print
\n
\
messages to the screen as it runs if be_verbose==true."
/*!
requires
- y contains at least 6 examples of each class. Moreover, every element in y
is either +1 or -1.
- max_runtime_seconds >= 0
- len(x) == len(y)
- all the vectors in x have the same dimension.
ensures
- This routine trains a radial basis function SVM on the given binary
classification training data. It uses the svm_c_trainer to do this. It also
uses find_max_global() and 6-fold cross-validation to automatically determine
the best settings of the SVM's hyper parameters.
- Note that we interpret y[i] as the label for the vector x[i]. Therefore, the
returned function, df, should generally satisfy sign(df(x[i])) == y[i] as
often as possible.
- The hyperparameter search will run for about max_runtime and will print
messages to the screen as it runs if be_verbose==true.
!*/
);
m
.
def
(
"auto_train_rbf_classifier"
,
[](
const
numpy_image
<
double
>&
x_
,
const
py
::
array_t
<
double
>&
y_
,
double
max_runtime_seconds
,
bool
be_verbose
)
{
std
::
vector
<
matrix
<
double
,
0
,
1
>>
x
;
std
::
vector
<
double
>
y
;
np_to_cpp
(
x_
,
y_
,
x
,
y
);
return
auto_train_rbf_classifier
(
x
,
y
,
std
::
chrono
::
microseconds
((
uint64_t
)(
max_runtime_seconds
*
1e6
)),
be_verbose
);
},
py
::
arg
(
"x"
),
py
::
arg
(
"y"
),
py
::
arg
(
"max_runtime_seconds"
),
py
::
arg
(
"be_verbose"
)
=
true
,
"requires
\n
\
- y contains at least 6 examples of each class. Moreover, every element in y
\n
\
is either +1 or -1.
\n
\
- max_runtime_seconds >= 0
\n
\
- len(x.shape(0)) == len(y)
\n
\
- x.shape(1) > 0
\n
\
ensures
\n
\
- This routine trains a radial basis function SVM on the given binary
\n
\
classification training data. It uses the svm_c_trainer to do this. It also
\n
\
uses find_max_global() and 6-fold cross-validation to automatically determine
\n
\
the best settings of the SVM's hyper parameters.
\n
\
- Note that we interpret y[i] as the label for the vector x[i]. Therefore, the
\n
\
returned function, df, should generally satisfy sign(df(x[i])) == y[i] as
\n
\
often as possible.
\n
\
- The hyperparameter search will run for about max_runtime and will print
\n
\
messages to the screen as it runs if be_verbose==true."
/*!
requires
- y contains at least 6 examples of each class. Moreover, every element in y
is either +1 or -1.
- max_runtime_seconds >= 0
- len(x.shape(0)) == len(y)
- x.shape(1) > 0
ensures
- This routine trains a radial basis function SVM on the given binary
classification training data. It uses the svm_c_trainer to do this. It also
uses find_max_global() and 6-fold cross-validation to automatically determine
the best settings of the SVM's hyper parameters.
- Note that we interpret y[i] as the label for the vector x[i]. Therefore, the
returned function, df, should generally satisfy sign(df(x[i])) == y[i] as
often as possible.
- The hyperparameter search will run for about max_runtime and will print
messages to the screen as it runs if be_verbose==true.
!*/
);
m
.
def
(
"reduce"
,
[](
const
normalized_function
<
decision_function
<
radial_basis_kernel
<
matrix
<
double
,
0
,
1
>>>>&
df
,
const
std
::
vector
<
matrix
<
double
,
0
,
1
>>&
x
,
long
num_bv
,
double
eps
)
{
auto
out
=
df
;
// null_trainer doesn't use y so we can leave it empty.
std
::
vector
<
double
>
y
;
out
.
function
=
reduced2
(
null_trainer
(
df
.
function
),
num_bv
,
eps
).
train
(
x
,
y
);
return
out
;
},
py
::
arg
(
"df"
),
py
::
arg
(
"x"
),
py
::
arg
(
"num_basis_vectors"
),
py
::
arg
(
"eps"
)
=
1e-3
);
m
.
def
(
"reduce"
,
[](
const
normalized_function
<
decision_function
<
radial_basis_kernel
<
matrix
<
double
,
0
,
1
>>>>&
df
,
const
numpy_image
<
double
>&
x_
,
long
num_bv
,
double
eps
)
{
std
::
vector
<
matrix
<
double
,
0
,
1
>>
x
;
np_to_cpp
(
x_
,
x
);
// null_trainer doesn't use y so we can leave it empty.
std
::
vector
<
double
>
y
;
auto
out
=
df
;
out
.
function
=
reduced2
(
null_trainer
(
df
.
function
),
num_bv
,
eps
).
train
(
x
,
y
);
return
out
;
},
py
::
arg
(
"df"
),
py
::
arg
(
"x"
),
py
::
arg
(
"num_basis_vectors"
),
py
::
arg
(
"eps"
)
=
1e-3
,
"requires
\n
\
- eps > 0
\n
\
- num_bv > 0
\n
\
ensures
\n
\
- This routine takes a learned radial basis function and tries to find a
\n
\
new RBF function with num_basis_vectors basis vectors that approximates
\n
\
the given df() as closely as possible. In particular, it finds a
\n
\
function new_df() such that new_df(x[i])==df(x[i]) as often as possible.
\n
\
- This is accomplished using a reduced set method that begins by using a
\n
\
projection, in kernel space, onto a random set of num_basis_vectors
\n
\
vectors in x. Then, L-BFGS is used to further optimize new_df() to match
\n
\
df(). The eps parameter controls how long L-BFGS will run, smaller
\n
\
values of eps possibly giving better solutions but taking longer to
\n
\
execute."
/*!
requires
- eps > 0
- num_bv > 0
ensures
- This routine takes a learned radial basis function and tries to find a
new RBF function with num_basis_vectors basis vectors that approximates
the given df() as closely as possible. In particular, it finds a
function new_df() such that new_df(x[i])==df(x[i]) as often as possible.
- This is accomplished using a reduced set method that begins by using a
projection, in kernel space, onto a random set of num_basis_vectors
vectors in x. Then, L-BFGS is used to further optimize new_df() to match
df(). The eps parameter controls how long L-BFGS will run, smaller
values of eps possibly giving better solutions but taking longer to
execute.
!*/
);
}
// ----------------------------------------------------------------------------------------
void
bind_decision_functions
(
py
::
module
&
m
)
void
bind_decision_functions
(
py
::
module
&
m
)
{
{
...
@@ -205,10 +552,18 @@ void bind_decision_functions(py::module &m)
...
@@ -205,10 +552,18 @@ void bind_decision_functions(py::module &m)
add_df
<
radial_basis_kernel
<
sample_type
>
>
(
m
,
"_decision_function_radial_basis"
);
add_df
<
radial_basis_kernel
<
sample_type
>
>
(
m
,
"_decision_function_radial_basis"
);
add_df
<
sparse_radial_basis_kernel
<
sparse_vect
>
>
(
m
,
"_decision_function_sparse_radial_basis"
);
add_df
<
sparse_radial_basis_kernel
<
sparse_vect
>
>
(
m
,
"_decision_function_sparse_radial_basis"
);
add_normalized_df
<
radial_basis_kernel
<
sample_type
>>
(
m
,
"_normalized_decision_function_radial_basis"
);
setup_auto_train_rbf_classifier
(
m
);
add_df
<
sigmoid_kernel
<
sample_type
>
>
(
m
,
"_decision_function_sigmoid"
);
add_df
<
sigmoid_kernel
<
sample_type
>
>
(
m
,
"_decision_function_sigmoid"
);
add_df
<
sparse_sigmoid_kernel
<
sparse_vect
>
>
(
m
,
"_decision_function_sparse_sigmoid"
);
add_df
<
sparse_sigmoid_kernel
<
sparse_vect
>
>
(
m
,
"_decision_function_sparse_sigmoid"
);
m
.
def
(
"test_binary_decision_function"
,
_normalized_test_binary_decision_function
<
radial_basis_kernel
<
sample_type
>
>
,
py
::
arg
(
"function"
),
py
::
arg
(
"samples"
),
py
::
arg
(
"labels"
));
m
.
def
(
"test_binary_decision_function"
,
_normalized_test_binary_decision_function_np
<
radial_basis_kernel
<
sample_type
>
>
,
py
::
arg
(
"function"
),
py
::
arg
(
"samples"
),
py
::
arg
(
"labels"
));
m
.
def
(
"test_binary_decision_function"
,
_test_binary_decision_function
<
linear_kernel
<
sample_type
>
>
,
m
.
def
(
"test_binary_decision_function"
,
_test_binary_decision_function
<
linear_kernel
<
sample_type
>
>
,
py
::
arg
(
"function"
),
py
::
arg
(
"samples"
),
py
::
arg
(
"labels"
));
py
::
arg
(
"function"
),
py
::
arg
(
"samples"
),
py
::
arg
(
"labels"
));
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment