Commit 12a3b2a8 authored by Davis King's avatar Davis King

Added an implementation of kernel ridge regression.

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403759
parent bc0e12f2
......@@ -22,6 +22,7 @@
#include "svm/svm_c_linear_trainer.h"
#include "svm/svm_c_ekm_trainer.h"
#include "svm/simplify_linear_decision_function.h"
#include "svm/krr_trainer.h"
#endif // DLIB_SVm_HEADER
......
// Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_KRR_TRAInER_H__
#define DLIB_KRR_TRAInER_H__
#include "../algs.h"
#include "function.h"
#include "kernel.h"
#include "empirical_kernel_map.h"
#include "linearly_independent_subset_finder.h"
#include "krr_trainer_abstract.h"
#include <vector>
#include <iostream>
namespace dlib
{
template <
typename K
>
class krr_trainer
{
public:
typedef K kernel_type;
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
typedef decision_function<kernel_type> trained_function_type;
krr_trainer (
) :
verbose(false),
use_regression_loss(true),
lambda(0),
max_basis_size(400),
ekm_stale(true)
{
// default lambda search list
lams = logspace(-9, 2, 40);
}
void be_verbose (
)
{
verbose = true;
}
void be_quiet (
)
{
verbose = false;
}
void estimate_lambda_for_regression (
)
{
use_regression_loss = true;
}
void estimate_lambda_for_classification (
)
{
use_regression_loss = false;
}
bool will_estimate_lambda_for_regression (
)
{
return use_regression_loss;
}
const kernel_type get_kernel (
) const
{
return kern;
}
void set_kernel (
const kernel_type& k
)
{
kern = k;
}
template <typename T>
void set_basis (
const T& basis_samples
)
{
// make sure requires clause is not broken
DLIB_ASSERT(basis_samples.size() > 0 && is_vector(vector_to_matrix(basis_samples)),
"\tvoid krr_trainer::set_basis(basis_samples)"
<< "\n\t You have to give a non-empty set of basis_samples and it must be a vector"
<< "\n\t basis_samples.size(): " << basis_samples.size()
<< "\n\t is_vector(vector_to_matrix(basis_samples)): " << is_vector(vector_to_matrix(basis_samples))
<< "\n\t this: " << this
);
basis = vector_to_matrix(basis_samples);
ekm_stale = true;
}
bool basis_loaded (
) const
{
return (basis.size() != 0);
}
void clear_basis (
)
{
basis.set_size(0);
ekm.clear();
ekm_stale = true;
}
unsigned long get_max_basis_size (
) const
{
return max_basis_size;
}
void set_max_basis_size (
unsigned long max_basis_size_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(max_basis_size_ > 0,
"\t void krr_trainer::set_max_basis_size()"
<< "\n\t max_basis_size_ must be greater than 0"
<< "\n\t max_basis_size_: " << max_basis_size_
<< "\n\t this: " << this
);
max_basis_size = max_basis_size_;
}
void set_lambda (
scalar_type lambda_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(lambda_ >= 0,
"\t void krr_trainer::set_lambda()"
<< "\n\t lambda must be greater than or equal to 0"
<< "\n\t lambda: " << lambda
<< "\n\t this: " << this
);
lambda = lambda_;
}
const scalar_type get_lambda (
) const
{
return lambda;
}
template <typename EXP>
void set_search_lambdas (
const matrix_exp<EXP>& lambdas
)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_vector(lambdas) && lambdas.size() > 0 && min(lambdas) > 0,
"\t void krr_trainer::set_search_lambdas()"
<< "\n\t lambdas must be a non-empty vector of values"
<< "\n\t is_vector(lambdas): " << is_vector(lambdas)
<< "\n\t lambdas.size(): " << lambdas.size()
<< "\n\t min(lambdas): " << min(lambdas)
<< "\n\t this: " << this
);
lams = matrix_cast<scalar_type>(lambdas);
}
const matrix<scalar_type,0,0,mem_manager_type>& get_search_lambdas (
) const
{
return lams;
}
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const
{
scalar_type temp, temp2;
return do_train(vector_to_matrix(x), vector_to_matrix(y), false, temp, temp2);
}
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y,
scalar_type& looe
) const
{
scalar_type temp;
return do_train(vector_to_matrix(x), vector_to_matrix(y), true, looe, temp);
}
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y,
scalar_type& looe,
scalar_type& lambda_used
) const
{
return do_train(vector_to_matrix(x), vector_to_matrix(y), true, looe, lambda_used);
}
private:
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> do_train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y,
bool output_looe,
scalar_type& best_looe,
scalar_type& the_lambda
) const
{
// make sure requires clause is not broken
DLIB_ASSERT(is_vector(x) && is_vector(y) && x.size() == y.size() && x.size() > 0,
"\t decision_function krr_trainer::train(x,y)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t is_vector(x): " << is_vector(x)
<< "\n\t is_vector(y): " << is_vector(y)
<< "\n\t x.size(): " << x.size()
<< "\n\t y.size(): " << y.size()
);
#ifdef ENABLE_ASSERTS
if (get_lambda() == 0 && will_estimate_lambda_for_regression() == false)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_binary_classification_problem(x,y),
"\t decision_function krr_trainer::train(x,y)"
<< "\n\t invalid inputs were given to this function"
);
}
#endif
// The first thing we do is make sure we have an appropriate ekm ready for use below.
if (basis_loaded())
{
if (ekm_stale)
{
ekm.load(kern, basis);
ekm_stale = false;
}
}
else
{
linearly_independent_subset_finder<kernel_type> lisf(kern, max_basis_size);
fill_lisf(lisf, x);
ekm.load(lisf);
}
if (verbose)
{
std::cout << "Number of basis vectors used: " << ekm.out_vector_size() << std::endl;
}
typedef matrix<scalar_type,0,1,mem_manager_type> column_matrix_type;
typedef matrix<scalar_type,0,0,mem_manager_type> general_matrix_type;
// Now we project all the x samples into kernel space using our EKM
matrix<column_matrix_type,0,1,mem_manager_type > proj_x;
proj_x.set_size(x.size());
for (long i = 0; i < proj_x.size(); ++i)
{
// Note that we also append a 1 to the end of the vectors because this is
// a convenient way of dealing with the bias term later on.
proj_x(i) = join_cols(ekm.project(x(i)), ones_matrix<scalar_type>(1,1));
}
/*
Notes on the solution of KRR
Let A = an proj_x.size() by ekm.out_vector_size() matrix which contains
all the projected data samples.
Let I = an identity matrix
Let C = trans(A)*A
Let L = trans(A)*y
Then the optimal w is given by:
w = inv(C + lambda*I) * L
There is a trick to compute leave one out cross validation results for many different
lambda values quickly. The following paper has a detailed discussion of various
approaches:
Notes on Regularized Least Squares by Ryan M. Rifkin and Ross A. Lippert.
In the implementation of the krr_trainer I'm only using two simple equations
from the above paper.
First note that inv(C + lambda*I) can be computed for many different lambda
values in an efficient way by using an eigen decomposition of C. So we use
the fact that:
inv(C + lambda*I) == V*inv(D + lambda*I)*trans(V)
where V*D*trans(V) == C
Also, via some simple linear algebra the above paper works out that the leave one out
value for a sample x(i) is equal to the following (we refer to proj_x(i) as x(i) for brevity):
Let G = inv(C + lambda*I)
let val = trans(x(i))*G*x(i);
leave one out value for sample x(i):
LOOV = (trans(w)*x(i) - y(i)*val) / (1 - val)
leave one out error for sample x(i):
LOOE = loss(y(i), LOOV)
*/
general_matrix_type C, tempm, G;
column_matrix_type L, tempv, w;
// compute C and L
for (long i = 0; i < proj_x.size(); ++i)
{
C += proj_x(i)*trans(proj_x(i));
L += y(i)*proj_x(i);
}
eigenvalue_decomposition<general_matrix_type> eig(C);
const general_matrix_type V = eig.get_pseudo_v();
const column_matrix_type D = eig.get_real_eigenvalues();
the_lambda = lambda;
// If we need to automatically select a lambda then do so using the LOOE trick described
// above.
if (lambda == 0)
{
best_looe = std::numeric_limits<scalar_type>::max();
// Compute leave one out errors for a bunch of different lambdas and pick the best one.
for (long idx = 0; idx < lams.size(); ++idx)
{
// first compute G
tempv = reciprocal(D + uniform_matrix<scalar_type>(D.nr(),D.nc(), lams(idx)));
tempm = scale_columns(V,tempv);
G = tempm*trans(V);
// compute the solution w for the current lambda
w = G*L;
scalar_type looe = 0;
for (long i = 0; i < proj_x.size(); ++i)
{
const scalar_type val = trans(proj_x(i))*G*proj_x(i);
const scalar_type temp = (1 - val);
scalar_type loov;
if (temp != 0)
loov = (trans(w)*proj_x(i) - y(i)*val) / temp;
else
loov = 0;
looe += loss(loov, y(i));
}
if (looe < best_looe)
{
best_looe = looe;
the_lambda = lams(idx);
}
}
// mark that we saved the looe to best_looe already
output_looe = false;
best_looe /= proj_x.size();
if (verbose)
{
using namespace std;
cout << "Using lambda: " << the_lambda << endl;
cout << "LOO Error: " << best_looe << endl;
}
}
// Now perform the main training. That is, find w.
// first, compute G = inv(C + the_lambda*I)
tempv = reciprocal(D + uniform_matrix<scalar_type>(D.nr(),D.nc(), the_lambda));
tempm = scale_columns(V,tempv);
G = tempm*trans(V);
w = G*L;
// If we haven't done this already and we are supposed to then compute the LOO error rate for
// the current lambda and store the result in best_looe.
if (output_looe)
{
best_looe = 0;
for (long i = 0; i < proj_x.size(); ++i)
{
const scalar_type val = trans(proj_x(i))*G*proj_x(i);
const scalar_type temp = (1 - val);
scalar_type loov;
if (temp != 0)
loov = (trans(w)*proj_x(i) - y(i)*val) / temp;
else
loov = 0;
best_looe += loss(loov, y(i));
}
best_looe /= proj_x.size();
if (verbose)
{
using namespace std;
cout << "Using lambda: " << the_lambda << endl;
cout << "LOO Error: " << best_looe << endl;
}
}
// convert w into a proper decision function
decision_function<kernel_type> df;
df = ekm.convert_to_decision_function(colm(w,0,w.size()-1));
df.b = -w(w.size()-1); // don't forget about the bias we stuck onto all the vectors
// If we used an automatically derived basis then there isn't any point in
// keeping the ekm around. So free its memory.
if (basis_loaded() == false)
{
ekm.clear();
}
return df;
}
inline scalar_type loss (
const scalar_type& a,
const scalar_type& b
) const
{
if (use_regression_loss)
{
return (a-b)*(a-b);
}
else
{
// if a and b have the same sign then no loss
if (a*b >= 0)
return 0;
else
return 1;
}
}
/*!
CONVENTION
- if (ekm_stale) then
- kern or basis have changed since the last time
they were loaded into the ekm
- get_lambda() == lambda
- get_kernel() == kern
- get_max_basis_size() == max_basis_size
- will_estimate_lambda_for_regression() == use_regression_loss
- get_search_lambdas() == lams
- basis_loaded() == (basis.size() != 0)
!*/
bool verbose;
bool use_regression_loss;
scalar_type lambda;
kernel_type kern;
unsigned long max_basis_size;
matrix<sample_type,0,1,mem_manager_type> basis;
mutable empirical_kernel_map<kernel_type> ekm;
mutable bool ekm_stale;
matrix<scalar_type,0,0,mem_manager_type> lams;
};
}
#endif // DLIB_KRR_TRAInER_H__
// Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_KRR_TRAInER_ABSTRACT_H__
#ifdef DLIB_KRR_TRAInER_ABSTRACT_H__
#include "../algs.h"
#include "function_abstract.h"
#include "kernel_abstract.h"
#include "empirical_kernel_map_abstract.h"
namespace dlib
{
template <
typename K
>
class krr_trainer
{
/*!
REQUIREMENTS ON K
is a kernel function object as defined in dlib/svm/kernel_abstract.h
INITIAL VALUE
- get_lambda() == 0
- basis_loaded() == false
- get_max_basis_size() == 400
- will_estimate_lambda_for_regression() == true
- get_search_lambdas() == logspace(-9, 2, 40)
- this object will not be verbose unless be_verbose() is called
WHAT THIS OBJECT REPRESENTS
This object represents a tool for performing kernel ridge regression
(This basic algorithm is also known my many other names, e.g. regularized
least squares or least squares SVM).
The exact definition of what this algorithm does is this:
Find w and b that minimizes the following (x_i are input samples and y_i are labels):
lambda*dot(w,w) + sum_over_i( (f(x_i) - y_i)^2 )
where f(x) == dot(x,w) - b
Except the dot products are replaced by kernel functions. So this
algorithm is just regular old least squares regression but with the
addition of a regularization term which encourages small w and the
application of the kernel trick.
It is implemented using the empirical_kernel_map and thus allows you
to run the algorithm on large datasets and obtain sparse outputs. It is also
capable of estimating the lambda parameter using leave-one-out cross-validation.
!*/
public:
typedef K kernel_type;
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
typedef decision_function<kernel_type> trained_function_type;
krr_trainer (
);
/*!
ensures
- This object is properly initialized and ready to be used.
!*/
void be_verbose (
);
/*!
ensures
- This object will print status messages to standard out.
!*/
void be_quiet (
);
/*!
ensures
- this object will not print anything to standard out
!*/
const kernel_type get_kernel (
) const;
/*!
ensures
- returns a copy of the kernel function in use by this object
!*/
void set_kernel (
const kernel_type& k
);
/*!
ensures
- #get_kernel() == k
!*/
template <typename T>
void set_basis (
const T& basis_samples
);
/*!
requires
- T must be a dlib::matrix type or something convertible to a matrix via vector_to_matrix()
(e.g. a std::vector)
- is_vector(basis_samples) == true
- basis_samples.size() > 0
- get_kernel() must be capable of operating on the elements of basis_samples. That is,
expressions such as get_kernel()(basis_samples(0), basis_samples(0)) should make sense.
ensures
- #basis_loaded() == true
!*/
bool basis_loaded (
) const;
/*!
ensures
- returns true if this object has been loaded with user supplied basis vectors and false otherwise.
!*/
void clear_basis (
);
/*!
ensures
- #basis_loaded() == false
!*/
unsigned long get_max_basis_size (
) const;
/*!
ensures
- returns the maximum number of basis vectors this object is allowed
to use. This parameter only matters when the user has not supplied
a basis via set_basis().
!*/
void set_max_basis_size (
unsigned long max_basis_size
);
/*!
requires
- max_basis_size > 0
ensures
- #get_max_basis_size() == max_basis_size
!*/
void set_lambda (
scalar_type lambda
);
/*!
requires
- lambda >= 0
ensures
- #get_lambda() == lambda
!*/
const scalar_type get_lambda (
) const;
/*!
ensures
- returns the regularization parameter. It is the parameter that
determines the trade off between trying to fit the training data
exactly or allowing more errors but hopefully improving the
generalization ability of the resulting function. Smaller values
encourage exact fitting while larger values of lambda may encourage
better generalization.
Note that a lambda of 0 has a special meaning. It indicates to this
object that it should automatically determine an appropriate lambda
value. This is done using leave-one-out cross-validation.
!*/
void estimate_lambda_for_regression (
);
/*!
ensures
- #will_estimate_lambda_for_regression() == true
!*/
void estimate_lambda_for_classification (
);
/*!
ensures
- #will_estimate_lambda_for_regression() == false
!*/
bool will_estimate_lambda_for_regression (
);
/*!
ensures
- returns true if the automatic lambda estimation will attempt to estimate a lambda
appropriate for a regression task. Otherwise it will try and find one which
minimizes the number of classification errors.
!*/
template <typename EXP>
void set_search_lambdas (
const matrix_exp<EXP>& lambdas
);
/*!
requires
- is_vector(lambdas) == true
- lambdas.size() > 0
- min(lambdas) > 0
- lambdas must contain floating point numbers
ensures
- #get_search_lambdas() == lambdas
!*/
const matrix<scalar_type,0,0,mem_manager_type>& get_search_lambdas (
) const;
/*!
ensures
- returns a matrix M such that:
- is_vector(M) == true
- M == a list of all the lambda values which will be tried when performing
LOO cross-validation for determining the best lambda.
!*/
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const;
/*!
requires
- x == a matrix or something convertible to a matrix via vector_to_matrix().
Also, x should contain sample_type objects.
- y == a matrix or something convertible to a matrix via vector_to_matrix().
Also, y should contain scalar_type objects.
- is_vector(x) == true
- is_vector(y) == true
- x.size() == y.size() > 0
- if (get_lambda() == 0 && will_estimate_lambda_for_regression() == false) then
- is_binary_classification_problem(x,y) == true
(i.e. if you want this algorithm to estimate a lambda appropriate for
classification functions then you had better give a valid classification
problem)
ensures
- performs kernel ridge regression given the training samples in x and labels in y.
- returns a decision_function F with the following properties:
- F(new_x) == predicted y value
- if (basis_loaded()) then
- training will be carried out in the span of the user supplied basis vectors
- else
- this object will attempt to automatically select an appropriate basis
- if (get_lambda() == 0) then
- This object will perform internal leave-one-out cross-validation to determine an
appropriate lambda automatically. It will compute the LOO error for each lambda
in get_search_lambdas() and select the best one.
- if (will_estimate_lambda_for_regression()) then
- the lambda selected will be the one that minimizes the mean squared error.
- else
- the lambda selected will be the one that minimizes the number classification
mistakes. We say a point is classified correctly if the output of the
decision_function has the same sign as its label.
- #get_lambda() == 0
(i.e. we don't change the get_lambda() value. If you want to know what the
automatically selected lambda value was then call the version of train()
defined below)
- else
- The user supplied value of get_lambda() will be used to perform the kernel
ridge regression.
!*/
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y,
scalar_type& looe
) const;
/*!
requires
- all the requirements for train(x,y) must be satisfied
ensures
- returns train(x,y)
(i.e. executes train(x,y) and returns its result)
- #looe == the average leave-one-out cross-validation error for the
round of training this function performed.
!*/
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y,
scalar_type& looe,
scalar_type& lambda_used
) const;
/*!
requires
- all the requirements for train(x,y) must be satisfied
ensures
- returns train(x,y)
(i.e. executes train(x,y) and returns its result)
- #looe == the average leave-one-out cross-validation error for the
round of training this function performed.
- #lambda_used == the value of lambda used to generate the
decision_function. Note that this lambda value is always
equal to get_lambda() if get_lambda() isn't 0.
!*/
};
}
#endif // DLIB_KRR_TRAInER_ABSTRACT_H__
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment