Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
1b093f7a
Commit
1b093f7a
authored
May 12, 2013
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
updated docs
parent
74ece35a
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
91 additions
and
0 deletions
+91
-0
ml.xml
docs/docs/ml.xml
+84
-0
term_index.xml
docs/docs/term_index.xml
+7
-0
No files found.
docs/docs/ml.xml
View file @
1b093f7a
...
@@ -116,6 +116,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
...
@@ -116,6 +116,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
</item>
</item>
<item>
structural_object_detection_trainer
</item>
<item>
structural_object_detection_trainer
</item>
<item>
structural_sequence_labeling_trainer
</item>
<item>
structural_sequence_labeling_trainer
</item>
<item>
structural_sequence_segmentation_trainer
</item>
<item>
structural_assignment_trainer
</item>
<item>
structural_assignment_trainer
</item>
<item>
structural_graph_labeling_trainer
</item>
<item>
structural_graph_labeling_trainer
</item>
<item>
svm_rank_trainer
</item>
<item>
svm_rank_trainer
</item>
...
@@ -161,6 +162,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
...
@@ -161,6 +162,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<item>
cross_validate_multiclass_trainer
</item>
<item>
cross_validate_multiclass_trainer
</item>
<item>
cross_validate_regression_trainer
</item>
<item>
cross_validate_regression_trainer
</item>
<item>
cross_validate_sequence_labeler
</item>
<item>
cross_validate_sequence_labeler
</item>
<item>
cross_validate_sequence_segmenter
</item>
<item>
cross_validate_assignment_trainer
</item>
<item>
cross_validate_assignment_trainer
</item>
<item>
cross_validate_graph_labeling_trainer
</item>
<item>
cross_validate_graph_labeling_trainer
</item>
<item>
cross_validate_ranking_trainer
</item>
<item>
cross_validate_ranking_trainer
</item>
...
@@ -169,6 +171,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
...
@@ -169,6 +171,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<item>
test_regression_function
</item>
<item>
test_regression_function
</item>
<item>
test_object_detection_function
</item>
<item>
test_object_detection_function
</item>
<item>
test_sequence_labeler
</item>
<item>
test_sequence_labeler
</item>
<item>
test_sequence_segmenter
</item>
<item>
test_assignment_function
</item>
<item>
test_assignment_function
</item>
<item>
test_graph_labeling_function
</item>
<item>
test_graph_labeling_function
</item>
<item>
test_ranking_function
</item>
<item>
test_ranking_function
</item>
...
@@ -218,6 +221,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
...
@@ -218,6 +221,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<item>
multiclass_linear_decision_function
</item>
<item>
multiclass_linear_decision_function
</item>
<item>
one_vs_all_decision_function
</item>
<item>
one_vs_all_decision_function
</item>
<item>
sequence_labeler
</item>
<item>
sequence_labeler
</item>
<item>
sequence_segmenter
</item>
<item>
assignment_function
</item>
<item>
assignment_function
</item>
<item>
graph_labeler
</item>
<item>
graph_labeler
</item>
</section>
</section>
...
@@ -239,6 +243,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
...
@@ -239,6 +243,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<item>
randomize_samples
</item>
<item>
randomize_samples
</item>
<item>
is_binary_classification_problem
</item>
<item>
is_binary_classification_problem
</item>
<item>
is_sequence_labeling_problem
</item>
<item>
is_sequence_labeling_problem
</item>
<item>
is_sequence_segmentation_problem
</item>
<item>
is_graph_labeling_problem
</item>
<item>
is_graph_labeling_problem
</item>
<item>
is_assignment_problem
</item>
<item>
is_assignment_problem
</item>
<item>
is_forced_assignment_problem
</item>
<item>
is_forced_assignment_problem
</item>
...
@@ -1447,6 +1452,29 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
...
@@ -1447,6 +1452,29 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
</component>
</component>
<!-- ************************************************************************* -->
<component>
<name>
sequence_segmenter
</name>
<file>
dlib/svm.h
</file>
<spec_file
link=
"true"
>
dlib/svm/sequence_segmenter_abstract.h
</spec_file>
<description>
This object is a tool for segmenting a sequence of objects into a set of
non-overlapping chunks. An example sequence segmentation task is to take
English sentences and identify all the named entities. In this example,
you would be using a sequence_segmenter to find all the chunks of
contiguous words which refer to proper names.
<p>
The sequence_segmenter is implemented using the BIO (Begin, Inside,
Outside) sequence tagging model. Moreover, the sequence tagging is done
internally using a
<a
href=
"#sequence_labeler"
>
sequence_labeler
</a>
object
and therefore sequence_segmenter objects are examples of chain structured
conditional random field style sequence taggers.
</p>
</description>
</component>
<!-- ************************************************************************* -->
<!-- ************************************************************************* -->
<component>
<component>
...
@@ -1728,6 +1756,19 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
...
@@ -1728,6 +1756,19 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
</component>
</component>
<!-- ************************************************************************* -->
<component>
<name>
is_sequence_segmentation_problem
</name>
<file>
dlib/svm.h
</file>
<spec_file
link=
"true"
>
dlib/svm/svm_abstract.h
</spec_file>
<description>
This function takes a set of training data for a sequence segmentation problem
and reports back if it could possibly be a well formed sequence segmentation problem.
</description>
</component>
<!-- ************************************************************************* -->
<!-- ************************************************************************* -->
<component>
<component>
...
@@ -2357,6 +2398,19 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
...
@@ -2357,6 +2398,19 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
</component>
</component>
<!-- ************************************************************************* -->
<component>
<name>
cross_validate_sequence_segmenter
</name>
<file>
dlib/svm.h
</file>
<spec_file
link=
"true"
>
dlib/svm/cross_validate_sequence_segmenter_abstract.h
</spec_file>
<description>
Performs k-fold cross validation on a user supplied sequence segmentation trainer object such
as the
<a
href=
"#structural_sequence_segmentation_trainer"
>
structural_sequence_segmentation_trainer
</a>
and returns the resulting precision, recall, and F1-score.
</description>
</component>
<!-- ************************************************************************* -->
<!-- ************************************************************************* -->
<component>
<component>
...
@@ -2425,6 +2479,18 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
...
@@ -2425,6 +2479,18 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
</component>
</component>
<!-- ************************************************************************* -->
<component>
<name>
test_sequence_segmenter
</name>
<file>
dlib/svm.h
</file>
<spec_file
link=
"true"
>
dlib/svm/cross_validate_sequence_segmenter_abstract.h
</spec_file>
<description>
Tests a
<a
href=
"#sequence_segmenter"
>
sequence_segmenter
</a>
on a set of data
and returns the resulting precision, recall, and F1-score.
</description>
</component>
<!-- ************************************************************************* -->
<!-- ************************************************************************* -->
<component>
<component>
...
@@ -2730,6 +2796,24 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
...
@@ -2730,6 +2796,24 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
</component>
</component>
<!-- ************************************************************************* -->
<component>
<name>
structural_sequence_segmentation_trainer
</name>
<file>
dlib/svm_threaded.h
</file>
<spec_file
link=
"true"
>
dlib/svm/structural_sequence_segmentation_trainer_abstract.h
</spec_file>
<description>
This object is a tool for learning to do sequence segmentation based on a
set of training data. The training procedure produces a
<a
href=
"#sequence_segmenter"
>
sequence_segmenter
</a>
object which can be used to identify the sub-segments of new data sequences.
<p>
This object internally uses the
<a
href=
"#structural_sequence_labeling_trainer"
>
structural_sequence_labeling_trainer
</a>
to solve the learning problem.
</p>
</description>
</component>
<!-- ************************************************************************* -->
<!-- ************************************************************************* -->
<component>
<component>
...
...
docs/docs/term_index.xml
View file @
1b093f7a
...
@@ -60,6 +60,10 @@
...
@@ -60,6 +60,10 @@
<term
file=
"ml.html"
name=
"structural_svm_sequence_labeling_problem"
include=
"dlib/svm_threaded.h"
/>
<term
file=
"ml.html"
name=
"structural_svm_sequence_labeling_problem"
include=
"dlib/svm_threaded.h"
/>
<term
file=
"ml.html"
name=
"structural_sequence_labeling_trainer"
include=
"dlib/svm_threaded.h"
/>
<term
file=
"ml.html"
name=
"structural_sequence_labeling_trainer"
include=
"dlib/svm_threaded.h"
/>
<term
file=
"ml.html"
name=
"sequence_segmenter"
include=
"dlib/svm.h"
/>
<term
file=
"dlib/svm/sequence_segmenter_abstract.h.html"
name=
"total_feature_vector_size"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"structural_sequence_segmentation_trainer"
include=
"dlib/svm_threaded.h"
/>
<term
file=
"ml.html"
name=
"is_forced_assignment_problem"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"is_forced_assignment_problem"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"is_assignment_problem"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"is_assignment_problem"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"is_graph_labeling_problem"
include=
"dlib/svm_threaded.h"
/>
<term
file=
"ml.html"
name=
"is_graph_labeling_problem"
include=
"dlib/svm_threaded.h"
/>
...
@@ -298,6 +302,7 @@
...
@@ -298,6 +302,7 @@
<term
file=
"ml.html"
name=
"simplify_linear_decision_function"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"simplify_linear_decision_function"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"is_binary_classification_problem"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"is_binary_classification_problem"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"is_sequence_labeling_problem"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"is_sequence_labeling_problem"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"is_sequence_segmentation_problem"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"is_learning_problem"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"is_learning_problem"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"svm_nu_trainer"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"svm_nu_trainer"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"svm_c_trainer"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"svm_c_trainer"
include=
"dlib/svm.h"
/>
...
@@ -329,6 +334,7 @@
...
@@ -329,6 +334,7 @@
<term
file=
"ml.html"
name=
"cross_validate_trainer"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"cross_validate_trainer"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"cross_validate_object_detection_trainer"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"cross_validate_object_detection_trainer"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"cross_validate_sequence_labeler"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"cross_validate_sequence_labeler"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"cross_validate_sequence_segmenter"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"cross_validate_trainer_threaded"
include=
"dlib/svm_threaded.h"
/>
<term
file=
"ml.html"
name=
"cross_validate_trainer_threaded"
include=
"dlib/svm_threaded.h"
/>
<term
file=
"ml.html"
name=
"cross_validate_multiclass_trainer"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"cross_validate_multiclass_trainer"
include=
"dlib/svm.h"
/>
<term
file=
"dlib/svm/cross_validate_multiclass_trainer_abstract.h.html"
name=
"cross_validation_error"
include=
"dlib/svm.h"
/>
<term
file=
"dlib/svm/cross_validate_multiclass_trainer_abstract.h.html"
name=
"cross_validation_error"
include=
"dlib/svm.h"
/>
...
@@ -338,6 +344,7 @@
...
@@ -338,6 +344,7 @@
<term
file=
"ml.html"
name=
"test_multiclass_decision_function"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"test_multiclass_decision_function"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"test_regression_function"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"test_regression_function"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"test_sequence_labeler"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"test_sequence_labeler"
include=
"dlib/svm.h"
/>
<term
file=
"ml.html"
name=
"test_sequence_segmenter"
include=
"dlib/svm.h"
/>
<term
link=
"ml.html#svm_nu_trainer"
name=
"support vector machine"
include=
"dlib/svm.h"
/>
<term
link=
"ml.html#svm_nu_trainer"
name=
"support vector machine"
include=
"dlib/svm.h"
/>
<term
link=
"ml.html#rvm_trainer"
name=
"relevance vector machine"
include=
"dlib/svm.h"
/>
<term
link=
"ml.html#rvm_trainer"
name=
"relevance vector machine"
include=
"dlib/svm.h"
/>
<term
link=
"ml.html#krr_trainer"
name=
"kernel ridge regression"
include=
"dlib/svm.h"
/>
<term
link=
"ml.html#krr_trainer"
name=
"kernel ridge regression"
include=
"dlib/svm.h"
/>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment