Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
226f5af1
Commit
226f5af1
authored
Jan 01, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added the poly_image local feature extractor.
parent
2b4e363f
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
751 additions
and
0 deletions
+751
-0
image_keypoint.h
dlib/image_keypoint.h
+1
-0
build_separable_poly_filters.h
dlib/image_keypoint/build_separable_poly_filters.h
+186
-0
poly_image.h
dlib/image_keypoint/poly_image.h
+283
-0
poly_image_abstract.h
dlib/image_keypoint/poly_image_abstract.h
+281
-0
No files found.
dlib/image_keypoint.h
View file @
226f5af1
...
...
@@ -6,6 +6,7 @@
#include "image_keypoint/surf.h"
#include "image_keypoint/hessian_pyramid.h"
#include "image_keypoint/hog.h"
#include "image_keypoint/poly_image.h"
#include "image_keypoint/hashed_feature_image.h"
#include "image_keypoint/nearest_neighbor_feature_image.h"
...
...
dlib/image_keypoint/build_separable_poly_filters.h
0 → 100644
View file @
226f5af1
// Copyright (C) 2011 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_BUILD_SEPARABLE_PoLY_FILTERS_H__
#define DLIB_BUILD_SEPARABLE_PoLY_FILTERS_H__
#include "../matrix.h"
#include "surf.h"
#include "../uintn.h"
#include <vector>
namespace
dlib
{
// ----------------------------------------------------------------------------------------
typedef
std
::
pair
<
matrix
<
double
,
0
,
1
>
,
matrix
<
double
,
0
,
1
>
>
separable_filter_type
;
typedef
std
::
pair
<
matrix
<
int32
,
0
,
1
>
,
matrix
<
int32
,
0
,
1
>
>
separable_int32_filter_type
;
// ----------------------------------------------------------------------------------------
std
::
vector
<
std
::
vector
<
separable_filter_type
>
>
build_separable_poly_filters
(
const
long
window_size
,
const
long
order
=
2
)
/*!
requires
- 1 <= order <= 6
- window_size >= 3 && window_size is odd
ensures
- the "first" element is the row_filter, the second is the col_filter.
- Some filters are not totally separable and that's why they are grouped
into vectors of vectors. The groups are all the parts of a partially
separable filter.
!*/
{
long
num_filters
=
6
;
switch
(
order
)
{
case
1
:
num_filters
=
3
;
break
;
case
2
:
num_filters
=
6
;
break
;
case
3
:
num_filters
=
10
;
break
;
case
4
:
num_filters
=
15
;
break
;
case
5
:
num_filters
=
21
;
break
;
case
6
:
num_filters
=
28
;
break
;
}
matrix
<
double
>
X
(
window_size
*
window_size
,
num_filters
);
matrix
<
double
,
0
,
1
>
G
(
window_size
*
window_size
,
1
);
const
double
sigma
=
window_size
/
4
.
0
;
long
cnt
=
0
;
for
(
double
x
=
-
window_size
/
2
;
x
<=
window_size
/
2
;
++
x
)
{
for
(
double
y
=
-
window_size
/
2
;
y
<=
window_size
/
2
;
++
y
)
{
X
(
cnt
,
0
)
=
1
;
X
(
cnt
,
1
)
=
x
;
X
(
cnt
,
2
)
=
y
;
if
(
X
.
nc
()
>
5
)
{
X
(
cnt
,
3
)
=
x
*
y
;
X
(
cnt
,
4
)
=
x
*
x
;
X
(
cnt
,
5
)
=
y
*
y
;
}
if
(
X
.
nc
()
>
9
)
{
X
(
cnt
,
6
)
=
x
*
x
*
x
;
X
(
cnt
,
7
)
=
y
*
x
*
x
;
X
(
cnt
,
8
)
=
y
*
y
*
x
;
X
(
cnt
,
9
)
=
y
*
y
*
y
;
}
if
(
X
.
nc
()
>
14
)
{
X
(
cnt
,
10
)
=
x
*
x
*
x
*
x
;
X
(
cnt
,
11
)
=
y
*
x
*
x
*
x
;
X
(
cnt
,
12
)
=
y
*
y
*
x
*
x
;
X
(
cnt
,
13
)
=
y
*
y
*
y
*
x
;
X
(
cnt
,
14
)
=
y
*
y
*
y
*
y
;
}
if
(
X
.
nc
()
>
20
)
{
X
(
cnt
,
15
)
=
x
*
x
*
x
*
x
*
x
;
X
(
cnt
,
16
)
=
y
*
x
*
x
*
x
*
x
;
X
(
cnt
,
17
)
=
y
*
y
*
x
*
x
*
x
;
X
(
cnt
,
18
)
=
y
*
y
*
y
*
x
*
x
;
X
(
cnt
,
19
)
=
y
*
y
*
y
*
y
*
x
;
X
(
cnt
,
20
)
=
y
*
y
*
y
*
y
*
y
;
}
if
(
X
.
nc
()
>
27
)
{
X
(
cnt
,
21
)
=
x
*
x
*
x
*
x
*
x
*
x
;
X
(
cnt
,
22
)
=
y
*
x
*
x
*
x
*
x
*
x
;
X
(
cnt
,
23
)
=
y
*
y
*
x
*
x
*
x
*
x
;
X
(
cnt
,
24
)
=
y
*
y
*
y
*
x
*
x
*
x
;
X
(
cnt
,
25
)
=
y
*
y
*
y
*
y
*
x
*
x
;
X
(
cnt
,
26
)
=
y
*
y
*
y
*
y
*
y
*
x
;
X
(
cnt
,
27
)
=
y
*
y
*
y
*
y
*
y
*
y
;
}
G
(
cnt
)
=
std
::
sqrt
(
gaussian
(
x
,
y
,
sigma
));
++
cnt
;
}
}
X
=
diagm
(
G
)
*
X
;
const
matrix
<
double
>
S
=
inv
(
trans
(
X
)
*
X
)
*
trans
(
X
)
*
diagm
(
G
);
matrix
<
double
,
0
,
1
>
row_filter
,
col_filter
;
matrix
<
double
>
u
,
v
,
temp
;
matrix
<
double
,
0
,
1
>
w
;
std
::
vector
<
std
::
vector
<
separable_filter_type
>
>
results
(
num_filters
);
for
(
long
r
=
0
;
r
<
S
.
nr
();
++
r
)
{
temp
=
reshape
(
rowm
(
S
,
r
),
window_size
,
window_size
);
svd3
(
temp
,
u
,
w
,
v
);
const
double
thresh
=
max
(
w
)
*
1e-8
;
for
(
long
i
=
0
;
i
<
w
.
size
();
++
i
)
{
if
(
w
(
i
)
>
thresh
)
{
col_filter
=
std
::
sqrt
(
w
(
i
))
*
colm
(
u
,
i
);
row_filter
=
std
::
sqrt
(
w
(
i
))
*
colm
(
v
,
i
);
results
[
r
].
push_back
(
std
::
make_pair
(
row_filter
,
col_filter
));
}
}
}
return
results
;
}
// ----------------------------------------------------------------------------------------
std
::
vector
<
std
::
vector
<
separable_int32_filter_type
>
>
build_separable_int32_poly_filters
(
const
long
window_size
,
const
long
order
=
2
,
const
double
max_range
=
300
.
0
)
/*!
requires
- 1 <= order <= 6
- window_size >= 3 && window_size is odd
- max_range > 1
ensures
- the "first" element is the row_filter, the second is the col_filter.
!*/
{
const
std
::
vector
<
std
::
vector
<
separable_filter_type
>
>&
filters
=
build_separable_poly_filters
(
window_size
,
order
);
std
::
vector
<
std
::
vector
<
separable_int32_filter_type
>
>
int_filters
(
filters
.
size
());
for
(
unsigned
long
i
=
0
;
i
<
filters
.
size
();
++
i
)
{
double
max_val
=
0
;
for
(
unsigned
long
j
=
0
;
j
<
filters
[
i
].
size
();
++
j
)
{
const
separable_filter_type
&
filt
=
filters
[
i
][
j
];
max_val
=
std
::
max
(
max_val
,
max
(
abs
(
filt
.
first
)));
max_val
=
std
::
max
(
max_val
,
max
(
abs
(
filt
.
second
)));
}
if
(
max_val
==
0
)
max_val
=
1
;
int_filters
[
i
].
resize
(
filters
[
i
].
size
());
for
(
unsigned
long
j
=
0
;
j
<
filters
[
i
].
size
();
++
j
)
{
const
separable_filter_type
&
filt
=
filters
[
i
][
j
];
int_filters
[
i
][
j
].
first
=
matrix_cast
<
int32
>
(
round
(
filt
.
first
*
max_range
/
max_val
));
int_filters
[
i
][
j
].
second
=
matrix_cast
<
int32
>
(
round
(
filt
.
second
*
max_range
/
max_val
));
}
}
return
int_filters
;
}
}
// ----------------------------------------------------------------------------------------
#endif // DLIB_BUILD_SEPARABLE_PoLY_FILTERS_H__
dlib/image_keypoint/poly_image.h
0 → 100644
View file @
226f5af1
// Copyright (C) 2011 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_POLY_ImAGE_H__
#define DLIB_POLY_ImAGE_H__
#include "poly_image_abstract.h"
#include "build_separable_poly_filters.h"
#include "../algs.h"
#include "../matrix.h"
#include "../array2d.h"
#include "../geometry.h"
#include <cmath>
namespace
dlib
{
// ----------------------------------------------------------------------------------------
template
<
long
downsample
>
class
poly_image
:
noncopyable
{
COMPILE_TIME_ASSERT
(
downsample
>=
1
);
public
:
typedef
matrix
<
double
,
0
,
1
>
descriptor_type
;
poly_image
(
)
{
clear
();
}
void
clear
(
)
{
poly_coef
.
clear
();
order
=
3
;
window_size
=
13
;
border_size
=
(
long
)
std
::
ceil
(
std
::
floor
(
window_size
/
2
.
0
)
/
downsample
);
num_rows
=
0
;
num_cols
=
0
;
filters
=
build_separable_poly_filters
(
window_size
,
order
);
}
long
get_order
(
)
const
{
return
order
;
}
long
get_window_size
(
)
const
{
return
window_size
;
}
void
setup
(
long
order_
,
long
window_size_
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
1
<=
order_
&&
order_
<=
6
&&
window_size_
>=
3
&&
(
window_size_
%
2
)
==
1
,
"
\t
descriptor_type poly_image::setup()"
<<
"
\n\t
Invalid arguments were given to this function."
<<
"
\n\t
order_: "
<<
order_
<<
"
\n\t
window_size_: "
<<
window_size_
<<
"
\n\t
this: "
<<
this
);
poly_coef
.
clear
();
order
=
order_
;
window_size
=
window_size_
;
border_size
=
(
long
)
std
::
ceil
(
std
::
floor
(
window_size
/
2
.
0
)
/
downsample
);
num_rows
=
0
;
num_cols
=
0
;
filters
=
build_separable_poly_filters
(
window_size
,
order
);
}
void
copy_configuration
(
const
poly_image
&
item
)
{
if
(
order
!=
item
.
order
||
window_size
!=
item
.
window_size
)
{
order
=
item
.
order
;
window_size
=
item
.
window_size
;
border_size
=
item
.
border_size
;
filters
=
item
.
filters
;
}
}
template
<
typename
image_type
>
inline
void
load
(
const
image_type
&
img
)
{
COMPILE_TIME_ASSERT
(
pixel_traits
<
typename
image_type
::
type
>::
has_alpha
==
false
);
poly_coef
.
resize
(
get_num_dimensions
());
des
.
set_size
(
get_num_dimensions
());
array2d
<
float
>
coef0
;
rectangle
rect
=
filter_image
(
img
,
coef0
,
filters
[
0
]);
num_rows
=
rect
.
height
();
num_cols
=
rect
.
width
();
for
(
unsigned
long
i
=
1
;
i
<
filters
.
size
();
++
i
)
{
filter_image
(
img
,
poly_coef
[
i
-
1
],
filters
[
i
]);
// intensity normalize everything
for
(
long
r
=
0
;
r
<
coef0
.
nr
();
++
r
)
{
for
(
long
c
=
0
;
c
<
coef0
.
nc
();
++
c
)
{
if
(
coef0
[
r
][
c
]
>=
1
)
poly_coef
[
i
-
1
][
r
][
c
]
/=
coef0
[
r
][
c
];
else
poly_coef
[
i
-
1
][
r
][
c
]
=
0
;
}
}
}
}
void
unload
()
{
poly_coef
.
clear
();
num_rows
=
0
;
num_cols
=
0
;
}
inline
unsigned
long
size
(
)
const
{
return
static_cast
<
unsigned
long
>
(
nr
()
*
nc
());
}
inline
long
nr
(
)
const
{
return
num_rows
;
}
inline
long
nc
(
)
const
{
return
num_cols
;
}
long
get_num_dimensions
(
)
const
{
// -1 because we discard the constant term of the polynomial.
return
filters
.
size
()
-
1
;
}
inline
const
descriptor_type
&
operator
()
(
long
row
,
long
col
)
const
{
// make sure requires clause is not broken
DLIB_ASSERT
(
0
<=
row
&&
row
<
nr
()
&&
0
<=
col
&&
col
<
nc
(),
"
\t
descriptor_type poly_image::operator()()"
<<
"
\n\t
invalid row or col argument"
<<
"
\n\t
row: "
<<
row
<<
"
\n\t
col: "
<<
col
<<
"
\n\t
nr(): "
<<
nr
()
<<
"
\n\t
nc(): "
<<
nc
()
<<
"
\n\t
this: "
<<
this
);
// add because of the zero border around the poly_coef images
row
+=
border_size
;
col
+=
border_size
;
for
(
long
i
=
0
;
i
<
des
.
size
();
++
i
)
des
(
i
)
=
poly_coef
[
i
][
row
][
col
];
return
des
;
}
const
rectangle
get_block_rect
(
long
row
,
long
col
)
const
{
return
centered_rect
(
downsample
*
point
(
col
+
border_size
,
row
+
border_size
),
window_size
,
window_size
);
}
const
point
image_to_feat_space
(
const
point
&
p
)
const
{
return
p
/
downsample
-
point
(
border_size
,
border_size
);
}
const
rectangle
image_to_feat_space
(
const
rectangle
&
rect
)
const
{
return
rectangle
(
image_to_feat_space
(
rect
.
tl_corner
()),
image_to_feat_space
(
rect
.
br_corner
()));
}
const
point
feat_to_image_space
(
const
point
&
p
)
const
{
return
(
p
+
point
(
border_size
,
border_size
))
*
downsample
;
}
const
rectangle
feat_to_image_space
(
const
rectangle
&
rect
)
const
{
return
rectangle
(
feat_to_image_space
(
rect
.
tl_corner
()),
feat_to_image_space
(
rect
.
br_corner
()));
}
friend
void
serialize
(
const
poly_image
&
item
,
std
::
ostream
&
out
)
{
serialize
(
item
.
poly_coef
,
out
);
serialize
(
item
.
order
,
out
);
serialize
(
item
.
window_size
,
out
);
serialize
(
item
.
border_size
,
out
);
serialize
(
item
.
num_rows
,
out
);
serialize
(
item
.
num_cols
,
out
);
}
friend
void
deserialize
(
poly_image
&
item
,
std
::
istream
&
in
)
{
deserialize
(
item
.
poly_coef
,
in
);
deserialize
(
item
.
order
,
in
);
deserialize
(
item
.
window_size
,
in
);
deserialize
(
item
.
border_size
,
in
);
deserialize
(
item
.
num_rows
,
in
);
deserialize
(
item
.
num_cols
,
in
);
// just rebuild the filters instead of loading them
item
.
filters
=
build_separable_poly_filters
(
item
.
window_size
,
item
.
order
);
}
private
:
template
<
typename
image_type
>
rectangle
filter_image
(
const
image_type
&
img
,
array2d
<
float
>&
out
,
const
std
::
vector
<
separable_filter_type
>&
filter
)
const
{
rectangle
rect
=
spatially_filter_image_separable_down
(
downsample
,
img
,
out
,
filter
[
0
].
first
,
filter
[
0
].
second
);
for
(
unsigned
long
i
=
1
;
i
<
filter
.
size
();
++
i
)
{
spatially_filter_image_separable_down
(
downsample
,
img
,
out
,
filter
[
i
].
first
,
filter
[
i
].
second
,
1
,
false
,
true
);
}
return
rect
;
}
std
::
vector
<
std
::
vector
<
separable_filter_type
>
>
filters
;
dlib
::
array
<
array2d
<
float
>
>::
expand_1b
poly_coef
;
long
order
;
long
window_size
;
long
border_size
;
long
num_rows
;
long
num_cols
;
mutable
descriptor_type
des
;
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_POLY_ImAGE_H__
dlib/image_keypoint/poly_image_abstract.h
0 → 100644
View file @
226f5af1
// Copyright (C) 2011 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_POLY_ImAGE_ABSTRACT_H__
#ifdef DLIB_POLY_ImAGE_ABSTRACT_H__
#include "../algs.h"
#include "../matrix.h"
#include "../geometry/rectangle_abstract.h"
#include <cmath>
namespace
dlib
{
template
<
long
downsample
>
class
poly_image
:
noncopyable
{
/*!
REQUIREMENTS ON TEMPLATE PARAMETERS
- downsample >= 1
INITIAL VALUE
- size() == 0
- get_order() == 3
- get_window_size() == 13
WHAT THIS OBJECT REPRESENTS
This object is a tool for extracting local feature descriptors from an image.
In particular, it fits a polynomial to every local pixel patch in an image and
allows you to query the coefficients of this polynomial. The coefficients
are intensity normalized by dividing them by the constant term of the fitted
polynomial and then the constant term is discarded.
Additionally, the user can specify a downsampling rate. If the template argument
downsample is set to 1 then feature extraction is performed at every pixel of
an input image (except for a small area around the image border). However,
if downsample is set to 2 then feature extraction is only performed at every
other pixel location. More generally, if downsample is set to N then feature
extraction is performed only every N pixels.
THREAD SAFETY
Concurrent access to an instance of this object is not safe and should be protected
by a mutex lock except for the case where you are copying the configuration
(via copy_configuration()) of a poly_image object to many other threads.
In this case, it is safe to copy the configuration of a shared object so long
as no other operations are performed on it.
!*/
public
:
typedef
matrix
<
double
,
0
,
1
>
descriptor_type
;
poly_image
(
);
/*!
ensures
- this object is properly initialized
!*/
void
clear
(
);
/*!
ensures
- this object will have its initial value
!*/
void
setup
(
long
order
,
long
window_size
);
/*!
requires
- 1 <= order <= 6
- window_size >= 3 && window_size is odd
ensures
- #get_order() == order
- #get_window_size() == window_size
!*/
long
get_order
(
)
const
;
/*!
ensures
- returns the order of the polynomial that will be fitted to
each local pixel patch during feature extraction.
!*/
long
get_window_size
(
)
const
;
/*!
ensures
- returns the size of the window used for local feature extraction.
This is the width and height of the window in pixels.
!*/
void
copy_configuration
(
const
poly_image
&
item
);
/*!
ensures
- copies all the state information of item into *this, except for state
information populated by load(). More precisely, given two poly_image
objects H1 and H2, the following sequence of instructions should always
result in both of them having the exact same state.
H2.copy_configuration(H1);
H1.load(img);
H2.load(img);
!*/
template
<
typename
image_type
>
inline
void
load
(
const
image_type
&
img
);
/*!
requires
- image_type == is an implementation of array2d/array2d_kernel_abstract.h
- pixel_traits<typename image_type::type>::has_alpha == false
ensures
- Performs the feature extraction described in the WHAT THIS OBJECT REPRESENTS
section above. This means after load() finishes you can call (*this)(row,col)
to obtain the polynomial coefficients for an order get_order() polynomial which
was fitted to the image patch get_block_rect(row,col).
- #size() > 0
!*/
void
unload
(
);
/*!
ensures
- #nr() == 0
- #nc() == 0
- clears only the state information which is populated by load(). For
example, let H be a poly_image object. Then consider the two sequences
of instructions:
Sequence 1:
H.load(img);
H.unload();
H.load(img);
Sequence 2:
H.load(img);
Both sequence 1 and sequence 2 should have the same effect on H.
!*/
inline
unsigned
long
size
(
)
const
;
/*!
ensures
- returns nr()*nc()
!*/
inline
long
nr
(
)
const
;
/*!
ensures
- returns the number of rows in this polynomial feature image
!*/
inline
long
nc
(
)
const
;
/*!
ensures
- returns the number of columns in this polynomial feature image
!*/
long
get_num_dimensions
(
)
const
;
/*!
ensures
- returns the number of dimensions in the feature vectors generated by
this object.
- In this case, this will be the number of coefficients in an order
get_order() polynomial, except for the constant term of the polynomial.
!*/
inline
const
descriptor_type
&
operator
()
(
long
row
,
long
col
)
const
;
/*!
requires
- 0 <= row < nr()
- 0 <= col < nc()
ensures
- returns the descriptor for the polynomial filtering block at the given row and column.
This vector will contain the polynomial coefficients for a polynomial fitted to the
image patch located at get_block_rect(row,col) in the original image given to load().
- The returned descriptor vector will have get_num_dimensions() elements.
!*/
const
rectangle
get_block_rect
(
long
row
,
long
col
)
const
;
/*!
ensures
- returns a rectangle that tells you what part of the original image is associated
with a particular polynomial filter block. That is, what part of the input image
is associated with (*this)(row,col).
- The returned rectangle will be get_window_size() pixels wide and tall.
!*/
const
point
image_to_feat_space
(
const
point
&
p
)
const
;
/*!
ensures
- Each local feature is extracted from a certain point in the input image.
This function returns the identity of the local feature corresponding
to the image location p. Or in other words, let P == image_to_feat_space(p),
then (*this)(P.y(),P.x()) == the local feature closest to, or centered at,
the point p in the input image. Note that some image points might not have
corresponding feature locations. E.g. border points or points outside the
image. In these cases the returned point will be outside get_rect(*this).
!*/
const
rectangle
image_to_feat_space
(
const
rectangle
&
rect
)
const
;
/*!
ensures
- returns rectangle(image_to_feat_space(rect.tl_corner()), image_to_feat_space(rect.br_corner()));
(i.e. maps a rectangle from image space to feature space)
!*/
const
point
feat_to_image_space
(
const
point
&
p
)
const
;
/*!
ensures
- returns the location in the input image space corresponding to the center
of the local feature at point p. In other words, this function computes
the inverse of image_to_feat_space(). Note that it may only do so approximately,
since more than one image location might correspond to the same local feature.
That is, image_to_feat_space() might not be invertible so this function gives
the closest possible result.
!*/
const
rectangle
feat_to_image_space
(
const
rectangle
&
rect
)
const
;
/*!
ensures
- return rectangle(feat_to_image_space(rect.tl_corner()), feat_to_image_space(rect.br_corner()));
(i.e. maps a rectangle from feature space to image space)
!*/
};
// ----------------------------------------------------------------------------------------
template
<
long
downsample
>
void
serialize
(
const
poly_image
<
downsample
>&
item
,
std
::
ostream
&
out
);
/*!
provides serialization support
!*/
template
<
long
downsample
>
void
deserialize
(
poly_image
<
downsample
>&
item
,
std
::
istream
&
in
);
/*!
provides deserialization support
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_POLY_ImAGE_ABSTRACT_H__
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment