Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
3cc32d00
Commit
3cc32d00
authored
Sep 30, 2013
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added a function for computing Felzenszwalb's 31 channel HOG image
representation.
parent
ab38059d
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
579 additions
and
0 deletions
+579
-0
image_transforms.h
dlib/image_transforms.h
+1
-0
fhog.h
dlib/image_transforms/fhog.h
+497
-0
fhog_abstract.h
dlib/image_transforms/fhog_abstract.h
+81
-0
No files found.
dlib/image_transforms.h
View file @
3cc32d00
...
...
@@ -16,6 +16,7 @@
#include "image_transforms/colormaps.h"
#include "image_transforms/segment_image.h"
#include "image_transforms/interpolation.h"
#include "image_transforms/fhog.h"
#endif // DLIB_IMAGE_TRANSFORMs_
dlib/image_transforms/fhog.h
0 → 100644
View file @
3cc32d00
// Copyright (C) 2013 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_fHOG_H__
#define DLIB_fHOG_H__
#include "fhog_abstract.h"
#include "../matrix.h"
#include "../array2d.h"
#include "../array.h"
#include "../geometry.h"
#include "assign_image.h"
#include "draw.h"
#include "interpolation.h"
namespace
dlib
{
// ----------------------------------------------------------------------------------------
namespace
impl_fhog
{
template
<
typename
image_type
>
inline
typename
dlib
::
enable_if_c
<
pixel_traits
<
typename
image_type
::
type
>::
rgb
>::
type
get_gradient
(
const
int
r
,
const
int
c
,
const
image_type
&
img
,
matrix
<
double
,
2
,
1
>&
grad
,
double
&
len
)
{
matrix
<
double
,
2
,
1
>
grad2
,
grad3
;
// get the red gradient
grad
=
(
int
)
img
[
r
][
c
+
1
].
red
-
(
int
)
img
[
r
][
c
-
1
].
red
,
(
int
)
img
[
r
+
1
][
c
].
red
-
(
int
)
img
[
r
-
1
][
c
].
red
;
len
=
length_squared
(
grad
);
// get the green gradient
grad2
=
(
int
)
img
[
r
][
c
+
1
].
green
-
(
int
)
img
[
r
][
c
-
1
].
green
,
(
int
)
img
[
r
+
1
][
c
].
green
-
(
int
)
img
[
r
-
1
][
c
].
green
;
double
v2
=
length_squared
(
grad2
);
// get the blue gradient
grad3
=
(
int
)
img
[
r
][
c
+
1
].
blue
-
(
int
)
img
[
r
][
c
-
1
].
blue
,
(
int
)
img
[
r
+
1
][
c
].
blue
-
(
int
)
img
[
r
-
1
][
c
].
blue
;
double
v3
=
length_squared
(
grad3
);
// pick color with strongest gradient
if
(
v2
>
len
)
{
len
=
v2
;
grad
=
grad2
;
}
if
(
v3
>
len
)
{
len
=
v3
;
grad
=
grad3
;
}
}
// ------------------------------------------------------------------------------------
template
<
typename
image_type
>
inline
typename
dlib
::
disable_if_c
<
pixel_traits
<
typename
image_type
::
type
>::
rgb
>::
type
get_gradient
(
const
int
r
,
const
int
c
,
const
image_type
&
img
,
matrix
<
double
,
2
,
1
>&
grad
,
double
&
len
)
{
grad
=
(
int
)
get_pixel_intensity
(
img
[
r
][
c
+
1
])
-
(
int
)
get_pixel_intensity
(
img
[
r
][
c
-
1
]),
(
int
)
get_pixel_intensity
(
img
[
r
+
1
][
c
])
-
(
int
)
get_pixel_intensity
(
img
[
r
-
1
][
c
]);
len
=
length_squared
(
grad
);
}
// ------------------------------------------------------------------------------------
template
<
typename
T
,
typename
mm1
,
typename
mm2
>
void
set_hog
(
dlib
::
array
<
array2d
<
T
,
mm1
>
,
mm2
>&
hog
,
int
o
,
int
x
,
int
y
,
const
double
&
value
)
{
hog
[
o
][
y
][
x
]
=
value
;
}
template
<
typename
T
,
typename
mm1
,
typename
mm2
>
void
init_hog
(
dlib
::
array
<
array2d
<
T
,
mm1
>
,
mm2
>&
hog
,
int
hog_nr
,
int
hog_nc
)
{
const
int
num_hog_bands
=
27
+
4
;
hog
.
resize
(
num_hog_bands
);
for
(
int
i
=
0
;
i
<
num_hog_bands
;
++
i
)
{
hog
[
i
].
set_size
(
hog_nr
,
hog_nc
);
}
}
// ------------------------------------------------------------------------------------
template
<
typename
T
,
typename
mm
>
void
set_hog
(
array2d
<
matrix
<
T
,
31
,
1
>
,
mm
>&
hog
,
int
o
,
int
x
,
int
y
,
const
double
&
value
)
{
hog
[
y
][
x
](
o
)
=
value
;
}
template
<
typename
T
,
typename
mm
>
void
init_hog
(
array2d
<
matrix
<
T
,
31
,
1
>
,
mm
>&
hog
,
int
hog_nr
,
int
hog_nc
)
{
hog
.
set_size
(
hog_nr
,
hog_nc
);
}
// ------------------------------------------------------------------------------------
template
<
typename
image_type
,
typename
out_type
>
void
impl_extract_fhog_features
(
const
image_type
&
img
,
out_type
&
hog
,
int
bin_size
)
{
/*
This function implements the HOG feature extraction method described in
the paper:
P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan
Object Detection with Discriminatively Trained Part Based Models
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 9, Sep. 2010
Moreover, this function is derived from the HOG feature extraction code
from the features.cc file in the voc-releaseX code (see
http://people.cs.uchicago.edu/~rbg/latent/) which is has the following
license (note that the code has been modified to work with grayscale and
color as well as planar and interlaced input and output formats):
Copyright (C) 2011, 2012 Ross Girshick, Pedro Felzenszwalb
Copyright (C) 2008, 2009, 2010 Pedro Felzenszwalb, Ross Girshick
Copyright (C) 2007 Pedro Felzenszwalb, Deva Ramanan
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
// unit vectors used to compute gradient orientation
matrix
<
double
,
2
,
1
>
directions
[
9
];
directions
[
0
]
=
1
.
0000
,
0
.
0000
;
directions
[
1
]
=
0
.
9397
,
0
.
3420
;
directions
[
2
]
=
0
.
7660
,
0
.
6428
;
directions
[
3
]
=
0
.
500
,
0
.
8660
;
directions
[
4
]
=
0
.
1736
,
0
.
9848
;
directions
[
5
]
=
-
0
.
1736
,
0
.
9848
;
directions
[
6
]
=
-
0
.
5000
,
0
.
8660
;
directions
[
7
]
=
-
0
.
7660
,
0
.
6428
;
directions
[
8
]
=
-
0
.
9397
,
0
.
3420
;
// First we allocate memory for caching orientation histograms & their norms.
const
int
cells_nr
=
(
int
)((
double
)
img
.
nr
()
/
(
double
)
bin_size
+
0
.
5
);
const
int
cells_nc
=
(
int
)((
double
)
img
.
nc
()
/
(
double
)
bin_size
+
0
.
5
);
array2d
<
matrix
<
float
,
18
,
1
>
>
hist
(
cells_nr
,
cells_nc
);
for
(
long
r
=
0
;
r
<
hist
.
nr
();
++
r
)
{
for
(
long
c
=
0
;
c
<
hist
.
nc
();
++
c
)
{
hist
[
r
][
c
]
=
0
;
}
}
array2d
<
float
>
norm
(
cells_nr
,
cells_nc
);
assign_all_pixels
(
norm
,
0
);
// memory for HOG features
const
int
hog_nr
=
std
::
max
(
cells_nr
-
2
,
0
);
const
int
hog_nc
=
std
::
max
(
cells_nc
-
2
,
0
);
init_hog
(
hog
,
hog_nr
,
hog_nc
);
const
int
visible_nr
=
cells_nr
*
bin_size
;
const
int
visible_nc
=
cells_nc
*
bin_size
;
// First populate the gradient histograms
for
(
int
y
=
1
;
y
<
visible_nr
-
1
;
y
++
)
{
for
(
int
x
=
1
;
x
<
visible_nc
-
1
;
x
++
)
{
const
int
r
=
std
::
min
<
int
>
(
y
,
img
.
nr
()
-
2
);
const
int
c
=
std
::
min
<
int
>
(
x
,
img
.
nc
()
-
2
);
matrix
<
double
,
2
,
1
>
grad
;
double
v
;
get_gradient
(
r
,
c
,
img
,
grad
,
v
);
v
=
std
::
sqrt
(
v
);
// snap to one of 18 orientations
double
best_dot
=
0
;
int
best_o
=
0
;
for
(
int
o
=
0
;
o
<
9
;
o
++
)
{
const
double
dot
=
dlib
::
dot
(
directions
[
o
],
grad
);
if
(
dot
>
best_dot
)
{
best_dot
=
dot
;
best_o
=
o
;
}
else
if
(
-
dot
>
best_dot
)
{
best_dot
=
-
dot
;
best_o
=
o
+
9
;
}
}
// add to 4 histograms around pixel using bilinear interpolation
double
xp
=
((
double
)
x
+
0
.
5
)
/
(
double
)
bin_size
-
0
.
5
;
double
yp
=
((
double
)
y
+
0
.
5
)
/
(
double
)
bin_size
-
0
.
5
;
int
ixp
=
(
int
)
std
::
floor
(
xp
);
int
iyp
=
(
int
)
std
::
floor
(
yp
);
double
vx0
=
xp
-
ixp
;
double
vy0
=
yp
-
iyp
;
double
vx1
=
1
.
0
-
vx0
;
double
vy1
=
1
.
0
-
vy0
;
if
(
ixp
>=
0
&&
iyp
>=
0
)
hist
[
iyp
][
ixp
](
best_o
)
+=
vy1
*
vx1
*
v
;
if
(
iyp
+
1
<
cells_nr
&&
ixp
>=
0
)
hist
[
iyp
+
1
][
ixp
](
best_o
)
+=
vy0
*
vx1
*
v
;
if
(
iyp
>=
0
&&
ixp
+
1
<
cells_nc
)
hist
[
iyp
][
ixp
+
1
](
best_o
)
+=
vy1
*
vx0
*
v
;
if
(
ixp
+
1
<
cells_nc
&&
iyp
+
1
<
cells_nr
)
hist
[
iyp
+
1
][
ixp
+
1
](
best_o
)
+=
vy0
*
vx0
*
v
;
}
}
// compute energy in each block by summing over orientations
for
(
int
r
=
0
;
r
<
cells_nr
;
++
r
)
{
for
(
int
c
=
0
;
c
<
cells_nc
;
++
c
)
{
for
(
int
o
=
0
;
o
<
9
;
o
++
)
{
norm
[
r
][
c
]
+=
(
hist
[
r
][
c
](
o
)
+
hist
[
r
][
c
](
o
+
9
))
*
(
hist
[
r
][
c
](
o
)
+
hist
[
r
][
c
](
o
+
9
));
}
}
}
const
double
eps
=
0
.
0001
;
// compute features
for
(
int
y
=
0
;
y
<
hog_nr
;
y
++
)
{
for
(
int
x
=
0
;
x
<
hog_nc
;
x
++
)
{
double
n1
,
n2
,
n3
,
n4
;
n1
=
1
.
0
/
std
::
sqrt
(
norm
[
y
+
1
][
x
+
1
]
+
norm
[
y
+
1
][
x
+
2
]
+
norm
[
y
+
2
][
x
+
1
]
+
norm
[
y
+
2
][
x
+
2
]
+
eps
);
n2
=
1
.
0
/
std
::
sqrt
(
norm
[
y
][
x
+
1
]
+
norm
[
y
][
x
+
2
]
+
norm
[
y
+
1
][
x
+
1
]
+
norm
[
y
+
1
][
x
+
2
]
+
eps
);
n3
=
1
.
0
/
std
::
sqrt
(
norm
[
y
+
1
][
x
]
+
norm
[
y
+
1
][
x
+
1
]
+
norm
[
y
+
2
][
x
]
+
norm
[
y
+
2
][
x
+
1
]
+
eps
);
n4
=
1
.
0
/
std
::
sqrt
(
norm
[
y
][
x
]
+
norm
[
y
][
x
+
1
]
+
norm
[
y
+
1
][
x
]
+
norm
[
y
+
1
][
x
+
1
]
+
eps
);
double
t1
=
0
;
double
t2
=
0
;
double
t3
=
0
;
double
t4
=
0
;
// contrast-sensitive features
for
(
int
o
=
0
;
o
<
18
;
o
++
)
{
double
h1
=
std
::
min
(
hist
[
y
+
1
][
x
+
1
](
o
)
*
n1
,
0
.
2
);
double
h2
=
std
::
min
(
hist
[
y
+
1
][
x
+
1
](
o
)
*
n2
,
0
.
2
);
double
h3
=
std
::
min
(
hist
[
y
+
1
][
x
+
1
](
o
)
*
n3
,
0
.
2
);
double
h4
=
std
::
min
(
hist
[
y
+
1
][
x
+
1
](
o
)
*
n4
,
0
.
2
);
set_hog
(
hog
,
o
,
x
,
y
,
0
.
5
*
(
h1
+
h2
+
h3
+
h4
));
t1
+=
h1
;
t2
+=
h2
;
t3
+=
h3
;
t4
+=
h4
;
}
// contrast-insensitive features
for
(
int
o
=
0
;
o
<
9
;
o
++
)
{
double
sum
=
hist
[
y
+
1
][
x
+
1
](
o
)
+
hist
[
y
+
1
][
x
+
1
](
o
+
9
);
double
h1
=
std
::
min
(
sum
*
n1
,
0
.
2
);
double
h2
=
std
::
min
(
sum
*
n2
,
0
.
2
);
double
h3
=
std
::
min
(
sum
*
n3
,
0
.
2
);
double
h4
=
std
::
min
(
sum
*
n4
,
0
.
2
);
set_hog
(
hog
,
o
+
18
,
x
,
y
,
0
.
5
*
(
h1
+
h2
+
h3
+
h4
));
}
// texture features
set_hog
(
hog
,
27
,
x
,
y
,
0
.
2357
*
t1
);
set_hog
(
hog
,
28
,
x
,
y
,
0
.
2357
*
t2
);
set_hog
(
hog
,
29
,
x
,
y
,
0
.
2357
*
t3
);
set_hog
(
hog
,
30
,
x
,
y
,
0
.
2357
*
t4
);
}
}
}
// ------------------------------------------------------------------------------------
inline
void
create_fhog_bar_images
(
dlib
::
array
<
matrix
<
float
>
>&
mbars
,
const
long
w
)
{
const
long
bdims
=
9
;
// Make the oriented lines we use to draw on each HOG cell.
mbars
.
resize
(
bdims
);
dlib
::
array
<
array2d
<
unsigned
char
>
>
bars
(
bdims
);
array2d
<
unsigned
char
>
temp
(
w
,
w
);
for
(
unsigned
long
i
=
0
;
i
<
bars
.
size
();
++
i
)
{
assign_all_pixels
(
temp
,
0
);
draw_line
(
temp
,
point
(
w
/
2
,
0
),
point
(
w
/
2
,
w
-
1
),
255
);
rotate_image
(
temp
,
bars
[
i
],
i
*-
pi
/
bars
.
size
());
mbars
[
i
]
=
subm
(
matrix_cast
<
float
>
(
mat
(
bars
[
i
])),
centered_rect
(
get_rect
(
bars
[
i
]),
w
,
w
)
);
}
}
}
// end namespace impl_fhog
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template
<
typename
image_type
,
typename
T
,
typename
mm1
,
typename
mm2
>
void
extract_fhog_features
(
const
image_type
&
img
,
dlib
::
array
<
array2d
<
T
,
mm1
>
,
mm2
>&
hog
,
int
bin_size
=
8
)
{
return
impl_fhog
::
impl_extract_fhog_features
(
img
,
hog
,
bin_size
);
}
template
<
typename
image_type
,
typename
T
,
typename
mm
>
void
extract_fhog_features
(
const
image_type
&
img
,
array2d
<
matrix
<
T
,
31
,
1
>
,
mm
>&
hog
,
int
bin_size
=
8
)
{
return
impl_fhog
::
impl_extract_fhog_features
(
img
,
hog
,
bin_size
);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
inline
point
image_to_fhog
(
point
p
,
int
sbin
)
{
// There is a one pixel border around the imag.
p
-=
point
(
1
,
1
);
// There is also a 1 "cell" border around the HOG image formation.
return
p
/
sbin
-
point
(
1
,
1
);
}
// ----------------------------------------------------------------------------------------
inline
point
fhog_to_image
(
point
p
,
int
sbin
)
{
// Convert to image space and then set to the center of the cell.
return
(
p
+
point
(
1
,
1
))
*
sbin
+
point
(
1
,
1
)
+
point
(
sbin
/
2
,
sbin
/
2
);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template
<
typename
T
,
typename
mm1
,
typename
mm2
>
matrix
<
unsigned
char
>
draw_fhog
(
const
dlib
::
array
<
array2d
<
T
,
mm1
>
,
mm2
>&
hog
,
const
long
w
=
15
)
{
dlib
::
array
<
matrix
<
float
>
>
mbars
;
impl_fhog
::
create_fhog_bar_images
(
mbars
,
w
);
// now draw the bars onto the HOG cells
matrix
<
float
>
himg
(
hog
[
0
].
nr
()
*
w
,
hog
[
0
].
nc
()
*
w
);
himg
=
0
;
for
(
unsigned
long
d
=
0
;
d
<
mbars
.
size
();
++
d
)
{
for
(
long
r
=
0
;
r
<
himg
.
nr
();
r
+=
w
)
{
for
(
long
c
=
0
;
c
<
himg
.
nc
();
c
+=
w
)
{
const
float
val
=
hog
[
d
][
r
/
w
][
c
/
w
]
+
hog
[
d
+
mbars
.
size
()][
r
/
w
][
c
/
w
]
+
hog
[
d
+
mbars
.
size
()
*
2
][
r
/
w
][
c
/
w
];
if
(
val
>
0
)
{
set_subm
(
himg
,
r
,
c
,
w
,
w
)
+=
val
*
mbars
[
d
%
mbars
.
size
()];
}
}
}
}
const
double
thresh
=
mean
(
himg
)
+
4
*
stddev
(
himg
);
return
matrix_cast
<
unsigned
char
>
(
upperbound
(
round
(
himg
*
255
/
thresh
),
255
));
}
// ----------------------------------------------------------------------------------------
template
<
typename
T
,
typename
mm
>
matrix
<
unsigned
char
>
draw_fhog
(
const
array2d
<
matrix
<
T
,
31
,
1
>
,
mm
>&
hog
,
const
long
w
=
15
)
{
dlib
::
array
<
matrix
<
float
>
>
mbars
;
impl_fhog
::
create_fhog_bar_images
(
mbars
,
w
);
// now draw the bars onto the HOG cells
matrix
<
float
>
himg
(
hog
.
nr
()
*
w
,
hog
.
nc
()
*
w
);
himg
=
0
;
for
(
unsigned
long
d
=
0
;
d
<
mbars
.
size
();
++
d
)
{
for
(
long
r
=
0
;
r
<
himg
.
nr
();
r
+=
w
)
{
for
(
long
c
=
0
;
c
<
himg
.
nc
();
c
+=
w
)
{
const
float
val
=
hog
[
r
/
w
][
c
/
w
](
d
)
+
hog
[
r
/
w
][
c
/
w
](
d
+
mbars
.
size
())
+
hog
[
r
/
w
][
c
/
w
](
d
+
mbars
.
size
()
*
2
);
if
(
val
>
0
)
{
set_subm
(
himg
,
r
,
c
,
w
,
w
)
+=
val
*
mbars
[
d
%
mbars
.
size
()];
}
}
}
}
const
double
thresh
=
mean
(
himg
)
+
4
*
stddev
(
himg
);
return
matrix_cast
<
unsigned
char
>
(
upperbound
(
round
(
himg
*
255
/
thresh
),
255
));
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_fHOG_H__
dlib/image_transforms/fhog_abstract.h
0 → 100644
View file @
3cc32d00
// Copyright (C) 2013 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_fHOG_ABSTRACT_H__
#ifdef DLIB_fHOG_ABSTRACT_H__
#include "../matrix/matrix_abstract.h"
#include "../array2d/array2d_kernel_abstract.h"
#include "../array/array_kernel_abstract.h"
namespace
dlib
{
// ----------------------------------------------------------------------------------------
template
<
typename
image_type
,
typename
T
,
typename
mm1
,
typename
mm2
>
void
extract_fhog_features
(
const
image_type
&
img
,
dlib
::
array
<
array2d
<
T
,
mm1
>
,
mm2
>&
hog
,
int
bin_size
=
8
);
template
<
typename
image_type
,
typename
T
,
typename
mm
>
void
extract_fhog_features
(
const
image_type
&
img
,
array2d
<
matrix
<
T
,
31
,
1
>
,
mm
>&
hog
,
int
bin_size
=
8
);
// ----------------------------------------------------------------------------------------
inline
point
image_to_fhog
(
point
p
,
int
bin_size
);
// ----------------------------------------------------------------------------------------
inline
point
fhog_to_image
(
point
p
,
int
bin_size
);
// ----------------------------------------------------------------------------------------
template
<
typename
T
,
typename
mm1
,
typename
mm2
>
matrix
<
unsigned
char
>
draw_fhog
(
const
dlib
::
array
<
array2d
<
T
,
mm1
>
,
mm2
>&
hog
,
const
long
w
=
15
);
// ----------------------------------------------------------------------------------------
template
<
typename
T
,
typename
mm
>
matrix
<
unsigned
char
>
draw_fhog
(
const
array2d
<
matrix
<
T
,
31
,
1
>
,
mm
>&
hog
,
const
long
w
=
15
);
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_fHOG_ABSTRACT_H__
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment