Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
46c00173
Commit
46c00173
authored
Aug 27, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added Sammon's algorithm.
parent
bf2edbec
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
600 additions
and
0 deletions
+600
-0
statistics.h
dlib/statistics.h
+1
-0
sammon.h
dlib/statistics/sammon.h
+269
-0
sammon_abstract.h
dlib/statistics/sammon_abstract.h
+117
-0
CMakeLists.txt
dlib/test/CMakeLists.txt
+1
-0
makefile
dlib/test/makefile
+1
-0
sammon.cpp
dlib/test/sammon.cpp
+211
-0
No files found.
dlib/statistics.h
View file @
46c00173
...
...
@@ -7,6 +7,7 @@
#include "statistics/dpca.h"
#include "statistics/random_subset_selector.h"
#include "statistics/image_feature_sampling.h"
#include "statistics/sammon.h"
#endif // DLIB_STATISTICs_H_
...
...
dlib/statistics/sammon.h
0 → 100644
View file @
46c00173
// Copyright (C) 2012 Emanuele Cesena (emanuele.cesena@gmail.com), Davis E. King
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_SAMMoN_H__
#define DLIB_SAMMoN_H__
#include "sammon_abstract.h"
#include "../matrix.h"
#include "../algs.h"
#include "dpca.h"
#include <vector>
namespace
dlib
{
class
sammon_projection
{
public
:
// ------------------------------------------------------------------------------------
template
<
typename
matrix_type
>
std
::
vector
<
matrix
<
double
,
0
,
1
>
>
operator
()
(
const
std
::
vector
<
matrix_type
>&
data
,
long
num_dims
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
num_dims
>
0
,
"
\t
std::vector<matrix<double,0,1> > sammon_projection::operator()"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
num_dims: "
<<
num_dims
);
std
::
vector
<
matrix
<
double
,
0
,
1
>
>
result
;
// projections
if
(
data
.
size
()
==
0
)
{
return
result
;
}
#ifdef ENABLE_ASSERTS
DLIB_ASSERT
(
0
<
num_dims
&&
num_dims
<=
data
[
0
].
size
(),
"
\t
std::vector<matrix<double,0,1> > sammon_projection::operator()"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
data.size(): "
<<
data
.
size
()
<<
"
\n\t
num_dims: "
<<
num_dims
<<
"
\n\t
data[0].size(): "
<<
data
[
0
].
size
()
);
for
(
unsigned
long
i
=
0
;
i
<
data
.
size
();
++
i
)
{
DLIB_ASSERT
(
is_col_vector
(
data
[
i
])
&&
data
[
i
].
size
()
==
data
[
0
].
size
(),
"
\t
std::vector<matrix<double,0,1> > sammon_projection::operator()"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
data["
<<
i
<<
"].size(): "
<<
data
[
i
].
size
()
<<
"
\n\t
data[0].size(): "
<<
data
[
0
].
size
()
<<
"
\n\t
is_col_vector(data["
<<
i
<<
"]): "
<<
is_col_vector
(
data
[
i
])
);
}
#endif
double
err
;
// error (discarded)
do_sammon_projection
(
data
,
num_dims
,
result
,
err
);
return
result
;
}
// ------------------------------------------------------------------------------------
template
<
typename
matrix_type
>
void
operator
()
(
const
std
::
vector
<
matrix_type
>&
data
,
long
num_dims
,
std
::
vector
<
matrix
<
double
,
0
,
1
>
>&
result
,
double
&
err
,
unsigned
long
num_iters
=
1000
,
const
double
err_delta
=
1.0e-9
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
num_dims
>
0
&&
num_iters
>
0
&&
err_delta
>
0
.
0
,
"
\t
std::vector<matrix<double,0,1> > sammon_projection::operator()"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
data.size(): "
<<
data
.
size
()
<<
"
\n\t
num_dims: "
<<
num_dims
<<
"
\n\t
num_iters: "
<<
num_iters
<<
"
\n\t
err_delta: "
<<
err_delta
);
if
(
data
.
size
()
==
0
)
{
result
.
clear
();
err
=
0
;
return
;
}
#ifdef ENABLE_ASSERTS
DLIB_ASSERT
(
0
<
num_dims
&&
num_dims
<=
data
[
0
].
size
(),
"
\t
std::vector<matrix<double,0,1> > sammon_projection::operator()"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
data.size(): "
<<
data
.
size
()
<<
"
\n\t
num_dims: "
<<
num_dims
<<
"
\n\t
data[0].size(): "
<<
data
[
0
].
size
()
);
for
(
unsigned
long
i
=
0
;
i
<
data
.
size
();
++
i
)
{
DLIB_ASSERT
(
is_col_vector
(
data
[
i
])
&&
data
[
i
].
size
()
==
data
[
0
].
size
(),
"
\t
std::vector<matrix<double,0,1> > sammon_projection::operator()"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
data["
<<
i
<<
"].size(): "
<<
data
[
i
].
size
()
<<
"
\n\t
data[0].size(): "
<<
data
[
0
].
size
()
<<
"
\n\t
is_col_vector(data["
<<
i
<<
"]): "
<<
is_col_vector
(
data
[
i
])
);
}
#endif
do_sammon_projection
(
data
,
num_dims
,
result
,
err
,
num_iters
,
err_delta
);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
private
:
void
compute_relative_distances
(
matrix
<
double
,
0
,
1
>&
dist
,
// relative distances (output)
matrix
<
double
,
0
,
0
>&
data
,
// input data (matrix whose columns are the input vectors)
double
eps_ratio
=
1.0e-7
// to compute the minimum distance eps
)
/*!
requires
- dist.nc() == comb( data.nc(), 2 ), preallocated
- eps_ratio > 0
ensures
- dist[k] == lenght(data[i] - data[j]) for k = j(j-1)/2 + i
!*/
{
const
long
N
=
data
.
nc
();
// num of points
double
eps
;
// minimum distance, forced to avoid vectors collision
// computed at runtime as eps_ration * mean(vectors distances)
for
(
int
k
=
0
,
i
=
1
;
i
<
N
;
++
i
)
for
(
int
j
=
0
;
j
<
i
;
++
j
)
dist
(
k
++
)
=
length
(
colm
(
data
,
i
)
-
colm
(
data
,
j
));
eps
=
eps_ratio
*
mean
(
dist
);
dist
=
lowerbound
(
dist
,
eps
);
}
// ----------------------------------------------------------------------------------------
template
<
typename
matrix_type
>
void
do_sammon_projection
(
const
std
::
vector
<
matrix_type
>&
data
,
// input data
unsigned
long
num_dims
,
// dimension of the reduced space
std
::
vector
<
matrix
<
double
,
0
,
1
>
>&
result
,
// projections (output)
double
&
err
,
// error (output)
unsigned
long
num_iters
=
1000
,
// max num of iterations: stop condition
const
double
err_delta
=
1.0e-9
// delta error: stop condition
)
/*!
requires
- matrix_type should be a kind of dlib::matrix<double,N,1>
- num_dims > 0
- num_iters > 0
- err_delta > 0
ensures
- result == a set of matrix<double,num_dims,1> objects that represent
the Sammon's projections of data vectors.
- err == the estimated error done in the projection, with the extra
property that err(at previous iteration) - err < err_delta
!*/
{
// other params
const
double
mf
=
0
.
3
;
// magic factor
matrix
<
double
>
mdata
;
// input data as matrix
matrix
<
double
>
projs
;
// projected vectors, i.e. output data as matrix
// std::vector<matrix> -> matrix
mdata
.
set_size
(
data
[
0
].
size
(),
data
.
size
());
for
(
unsigned
int
i
=
0
;
i
<
data
.
size
();
i
++
)
set_colm
(
mdata
,
i
)
=
data
[
i
];
const
long
N
=
mdata
.
nc
();
// num of points
const
long
d
=
num_dims
;
// size of the reduced space
const
long
nd
=
N
*
(
N
-
1
)
/
2
;
// num of pairs of points = size of the distances vectors
matrix
<
double
,
0
,
1
>
dsij
,
inv_dsij
;
// d*_ij: pair-wise distances in the input space (and inverses)
dsij
.
set_size
(
nd
,
1
);
inv_dsij
.
set_size
(
nd
,
1
);
double
ic
;
// 1.0 / sum of dsij
matrix
<
double
,
0
,
1
>
dij
;
// d_ij: pair-wise distances in the reduced space
dij
.
set_size
(
nd
,
1
);
matrix
<
double
,
0
,
0
>
dE
,
dE2
,
dtemp
;
// matrices representing error partial derivatives
dE
.
set_size
(
d
,
N
);
dE2
.
set_size
(
d
,
N
);
dtemp
.
set_size
(
d
,
N
);
matrix
<
double
,
0
,
1
>
inv_dij
,
alpha
;
// utility vectors used to compute the partial derivatives
inv_dij
.
set_size
(
N
,
1
);
// inv_dij is 1.0/dij, but we only need it column-wise
alpha
.
set_size
(
N
,
1
);
// (slightly wasting a bit of computation)
// alpha = 1.0/dij - 1.0/dsij, again column-wise
// initialize projs with PCA
discriminant_pca
<
matrix
<
double
>
>
dpca
;
for
(
int
i
=
0
;
i
<
mdata
.
nc
();
++
i
)
{
dpca
.
add_to_total_variance
(
colm
(
mdata
,
i
));
}
matrix
<
double
>
mat
=
dpca
.
dpca_matrix_of_size
(
num_dims
);
projs
=
mat
*
mdata
;
// compute dsij, inv_dsij and ic
compute_relative_distances
(
dsij
,
mdata
);
inv_dsij
=
1
.
0
/
dsij
;
ic
=
1
.
0
/
sum
(
dsij
);
// compute dij and err
compute_relative_distances
(
dij
,
projs
);
err
=
ic
*
sum
(
pointwise_multiply
(
squared
(
dij
-
dsij
),
inv_dsij
));
// start iterating
while
(
num_iters
--
)
{
// compute dE, dE2 progressively column by column
for
(
int
p
=
0
;
p
<
N
;
++
p
)
{
// compute
// - alpha_p, the column vector with 1/d_pj - 1/d*_pj
// - dtemp, the matrix with the p-th column repeated all along
//TODO: optimize constructions
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
int
pos
=
(
i
<
p
)
?
p
*
(
p
-
1
)
/
2
+
i
:
i
*
(
i
-
1
)
/
2
+
p
;
inv_dij
(
i
)
=
(
i
==
p
)
?
0
.
0
:
1
.
0
/
dij
(
pos
);
alpha
(
i
)
=
(
i
==
p
)
?
0
.
0
:
inv_dij
(
i
)
-
inv_dsij
(
pos
);
set_colm
(
dtemp
,
i
)
=
colm
(
projs
,
p
);
}
dtemp
-=
projs
;
set_colm
(
dE
,
p
)
=
dtemp
*
alpha
;
double
sum_alpha
=
sum
(
alpha
);
set_colm
(
dE2
,
p
)
=
abs
(
sum_alpha
+
squared
(
dtemp
)
*
cubed
(
inv_dij
)
);
}
// compute the update projections
projs
+=
pointwise_multiply
(
dE
,
mf
*
reciprocal
(
dE2
));
// compute new dij and error
compute_relative_distances
(
dij
,
projs
);
double
err_new
=
ic
*
sum
(
pointwise_multiply
(
squared
(
dij
-
dsij
),
inv_dsij
)
);
if
(
err
-
err_new
<
err_delta
)
break
;
err
=
err_new
;
}
// matrix -> std::vector<matrix>
result
.
clear
();
for
(
int
i
=
0
;
i
<
projs
.
nc
();
++
i
)
result
.
push_back
(
colm
(
projs
,
i
));
}
};
}
// namespace dlib
#endif // DLIB_SAMMoN_H__
dlib/statistics/sammon_abstract.h
0 → 100644
View file @
46c00173
// Copyright (C) 2012 Emanuele Cesena (emanuele.cesena@gmail.com), Davis E. King
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_SAMMoN_ABSTRACT_H__
#ifdef DLIB_SAMMoN_ABSTRACT_H__
#include "../matrix/matrix_abstract.h"
#include <vector>
namespace
dlib
{
class
sammon_projection
{
/*!
WHAT THIS OBJECT REPRESENTS
This is a function object that computes the Sammon projection of a set
of N points in a L-dimensional vector space onto a d-dimensional space
(d < L), according to the paper:
A Nonlinear Mapping for Data Structure Analysis (1969) by J.W. Sammon
The current implementation is a vectorized version of the original algorithm.
!*/
public
:
sammon_projection
(
);
/*!
ensures
- this object is properly initialized
!*/
template
<
typename
matrix_type
>
std
::
vector
<
matrix
<
double
,
0
,
1
>
>
operator
()
(
const
std
::
vector
<
matrix_type
>&
data
,
long
num_dims
);
/*!
requires
- num_dims > 0
- matrix_type should be a kind of dlib::matrix of doubles capable
of representing column vectors.
- for all valid i:
- is_col_vector(data[i]) == true
- data[0].size() == data[i].size()
(i.e. all the vectors in data must have the same dimensionality)
- if (data.size() != 0) then
- 0 < num_dims <= data[0].size()
(i.e. you can't project into a higher dimension than the input data,
only to a lower dimension.)
ensures
- This routine computes Sammon's dimensionality reduction method based on the
given input data. It will attempt to project the contents of data into a
num_dims dimensional space that preserves relative distances between the
input data points.
- This function returns a std::vector, OUT, such that:
- OUT == a set of column vectors that represent the Sammon's projection of
the input data vectors.
- OUT.size() == data.size()
- for all valid i:
- OUT[i].size() == num_dims
- OUT[i] == the Sammon projection of the input vector data[i]
!*/
template
<
typename
matrix_type
>
void
operator
()
(
const
std
::
vector
<
matrix_type
>&
data
,
long
num_dims
,
std
::
vector
<
matrix
<
double
,
0
,
1
>
>&
result
,
double
&
err
,
unsigned
long
num_iters
=
1000
,
const
double
err_delta
=
1.0e-9
);
/*!
requires
- num_iters > 0
- err_delta > 0
- num_dims > 0
- matrix_type should be a kind of dlib::matrix of doubles capable
of representing column vectors.
- for all valid i:
- is_col_vector(data[i]) == true
- data[0].size() == data[i].size()
(i.e. all the vectors in data must have the same dimensionality)
- if (data.size() != 0) then
- 0 < num_dims <= data[0].size()
(i.e. you can't project into a higher dimension than the input data,
only to a lower dimension.)
ensures
- This routine computes Sammon's dimensionality reduction method based on the
given input data. It will attempt to project the contents of data into a
num_dims dimensional space that preserves relative distances between the
input data points.
- #err == the final error value at the end of the algorithm. The goal of Sammon's
algorithm is to find a lower dimensional projection of the input data that
preserves the relative distances between points. The value in #err is a measure
of the total error at the end of the algorithm. So smaller values indicate
a better projection was found than if a large value is returned via #err.
- Sammon's algorithm will run until either num_iters iterations has executed
or the change in error from one iteration to the next is less than err_delta.
- Upon completion, the output of Sammon's projection is stored into #result, in
particular, we will have:
- #result == a set of column vectors that represent the Sammon's projection of
the input data vectors.
- #result.size() == data.size()
- for all valid i:
- #result[i].size() == num_dims
- #result[i] == the Sammon projection of the input vector data[i]
!*/
};
}
#endif // DLIB_SAMMoN_ABSTRACT_H__
dlib/test/CMakeLists.txt
View file @
46c00173
...
...
@@ -91,6 +91,7 @@ set (tests
read_write_mutex.cpp
reference_counter.cpp
rls.cpp
sammon.cpp
scan_image.cpp
sequence.cpp
sequence_labeler.cpp
...
...
dlib/test/makefile
View file @
46c00173
...
...
@@ -106,6 +106,7 @@ SRC += rand.cpp
SRC
+=
read_write_mutex.cpp
SRC
+=
reference_counter.cpp
SRC
+=
rls.cpp
SRC
+=
sammon.cpp
SRC
+=
scan_image.cpp
SRC
+=
sequence.cpp
SRC
+=
sequence_labeler.cpp
...
...
dlib/test/sammon.cpp
0 → 100644
View file @
46c00173
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <sstream>
#include <string>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <dlib/statistics.h>
#include "tester.h"
namespace
{
using
namespace
test
;
using
namespace
dlib
;
using
namespace
std
;
logger
dlog
(
"test.sammon"
);
std
::
vector
<
matrix
<
double
,
4
,
1
>
>
make_test_data4
(
)
{
std
::
vector
<
matrix
<
double
,
4
,
1
>
>
data
;
matrix
<
double
,
4
,
1
>
m
;
m
=
0
,
0
,
0
,
0
;
data
.
push_back
(
m
);
m
=
1
,
0
,
0
,
0
;
data
.
push_back
(
m
);
m
=
0
,
1
,
0
,
0
;
data
.
push_back
(
m
);
m
=
0
,
0
,
1
,
0
;
data
.
push_back
(
m
);
return
data
;
}
std
::
vector
<
matrix
<
double
,
3
,
1
>
>
make_test_data3
(
)
{
std
::
vector
<
matrix
<
double
,
3
,
1
>
>
data
;
matrix
<
double
,
3
,
1
>
m
;
m
=
0
,
0
,
0
;
data
.
push_back
(
m
);
m
=
1
,
0
,
0
;
data
.
push_back
(
m
);
m
=
0
,
1
,
0
;
data
.
push_back
(
m
);
m
=
0
,
0
,
1
;
data
.
push_back
(
m
);
return
data
;
}
std
::
vector
<
matrix
<
double
>
>
make_test_data3d
(
)
{
std
::
vector
<
matrix
<
double
>
>
data
;
matrix
<
double
,
3
,
1
>
m
;
m
=
0
,
0
,
0
;
data
.
push_back
(
m
);
m
=
1
,
0
,
0
;
data
.
push_back
(
m
);
m
=
0
,
1
,
0
;
data
.
push_back
(
m
);
m
=
0
,
0
,
1
;
data
.
push_back
(
m
);
return
data
;
}
void
runtest
()
{
sammon_projection
s
;
std
::
vector
<
matrix
<
double
,
0
,
1
>
>
projs
=
s
(
make_test_data3
(),
2
);
running_stats
<
double
>
rs1
,
rs2
;
rs1
.
add
(
length
(
projs
[
0
]
-
projs
[
1
]));
rs1
.
add
(
length
(
projs
[
0
]
-
projs
[
2
]));
rs1
.
add
(
length
(
projs
[
0
]
-
projs
[
3
]));
rs2
.
add
(
length
(
projs
[
1
]
-
projs
[
2
]));
rs2
.
add
(
length
(
projs
[
2
]
-
projs
[
3
]));
rs2
.
add
(
length
(
projs
[
3
]
-
projs
[
1
]));
DLIB_TEST
(
rs1
.
stddev
()
/
rs1
.
mean
()
<
1e-4
);
DLIB_TEST
(
rs2
.
stddev
()
/
rs2
.
mean
()
<
1e-4
);
projs
=
s
(
make_test_data4
(),
2
);
rs1
.
clear
();
rs2
.
clear
();
rs1
.
add
(
length
(
projs
[
0
]
-
projs
[
1
]));
rs1
.
add
(
length
(
projs
[
0
]
-
projs
[
2
]));
rs1
.
add
(
length
(
projs
[
0
]
-
projs
[
3
]));
rs2
.
add
(
length
(
projs
[
1
]
-
projs
[
2
]));
rs2
.
add
(
length
(
projs
[
2
]
-
projs
[
3
]));
rs2
.
add
(
length
(
projs
[
3
]
-
projs
[
1
]));
DLIB_TEST
(
rs1
.
stddev
()
/
rs1
.
mean
()
<
1e-4
);
DLIB_TEST
(
rs2
.
stddev
()
/
rs2
.
mean
()
<
1e-4
);
projs
=
s
(
make_test_data3d
(),
2
);
rs1
.
clear
();
rs2
.
clear
();
rs1
.
add
(
length
(
projs
[
0
]
-
projs
[
1
]));
rs1
.
add
(
length
(
projs
[
0
]
-
projs
[
2
]));
rs1
.
add
(
length
(
projs
[
0
]
-
projs
[
3
]));
rs2
.
add
(
length
(
projs
[
1
]
-
projs
[
2
]));
rs2
.
add
(
length
(
projs
[
2
]
-
projs
[
3
]));
rs2
.
add
(
length
(
projs
[
3
]
-
projs
[
1
]));
DLIB_TEST
(
rs1
.
stddev
()
/
rs1
.
mean
()
<
1e-4
);
DLIB_TEST
(
rs2
.
stddev
()
/
rs2
.
mean
()
<
1e-4
);
}
void
runtest2
()
{
sammon_projection
s
;
std
::
vector
<
matrix
<
double
,
0
,
1
>
>
projs
,
temp
;
DLIB_TEST
(
s
(
projs
,
3
).
size
()
==
0
);
matrix
<
double
,
2
,
1
>
m
;
m
=
1
,
2
;
projs
.
push_back
(
m
);
temp
=
s
(
projs
,
2
);
DLIB_TEST
(
temp
.
size
()
==
1
);
DLIB_TEST
(
temp
[
0
].
size
()
==
2
);
projs
.
push_back
(
m
);
temp
=
s
(
projs
,
1
);
DLIB_TEST
(
temp
.
size
()
==
2
);
DLIB_TEST
(
temp
[
0
].
size
()
==
1
);
DLIB_TEST
(
temp
[
1
].
size
()
==
1
);
}
void
runtest3
(
int
num_dims
)
{
sammon_projection
s
;
std
::
vector
<
matrix
<
double
,
0
,
1
>
>
projs
;
matrix
<
double
,
3
,
1
>
m
;
m
=
1
,
1
,
1
;
projs
.
push_back
(
m
);
m
=
1
,
2
,
1
;
projs
.
push_back
(
m
);
m
=
1
,
3
,
1
;
projs
.
push_back
(
m
);
projs
=
s
(
projs
,
num_dims
);
const
double
d1a
=
length
(
projs
[
0
]
-
projs
[
1
]);
const
double
d1b
=
length
(
projs
[
1
]
-
projs
[
2
]);
const
double
d2
=
length
(
projs
[
0
]
-
projs
[
2
]);
DLIB_TEST
(
std
::
abs
(
d1a
-
d1b
)
/
d1a
<
1e-8
);
DLIB_TEST
(
std
::
abs
(
d2
/
d1a
-
2
)
<
1e-8
);
}
void
runtest4
(
int
num_dims
)
{
sammon_projection
s
;
std
::
vector
<
matrix
<
double
,
0
,
1
>
>
projs
;
matrix
<
double
,
3
,
1
>
m
;
m
=
1
,
1
,
1
;
projs
.
push_back
(
m
);
m
=
1
,
2
,
1
;
projs
.
push_back
(
m
);
projs
=
s
(
projs
,
num_dims
);
DLIB_TEST
(
length
(
projs
[
0
]
-
projs
[
1
])
>
1e-5
);
}
class
sammon_tester
:
public
tester
{
public
:
sammon_tester
(
)
:
tester
(
"test_sammon"
,
"Runs tests on the sammon_projection component."
)
{}
void
perform_test
(
)
{
print_spinner
();
runtest
();
print_spinner
();
runtest2
();
print_spinner
();
runtest3
(
2
);
print_spinner
();
runtest4
(
2
);
runtest3
(
1
);
print_spinner
();
runtest4
(
1
);
}
}
a
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment