Commit 5e034022 authored by Davis King's avatar Davis King

Added the linearly_independent_subset_finder object

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%402411
parent 7fa878f4
// Copyright (C) 2008 Davis E. King (davisking@users.sourceforge.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_LISf__
#define DLIB_LISf__
#include <vector>
#include "linearly_independent_subset_finder_abstract.h"
#include "../matrix.h"
#include "function.h"
#include "../std_allocator.h"
#include "../algs.h"
#include "../serialize.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <typename kernel_type>
class linearly_independent_subset_finder
{
/*!
INITIAL VALUE
- min_strength == 0
- min_vect_idx == 0
- K_inv.size() == 0
- K.size() == 0
- dictionary.size() == 0
CONVENTION
- max_dictionary_size() == my_max_dictionary_size
- get_kernel() == kernel
- dictionary_size() == dictionary.size()
- get_dictionary() == vector_to_matrix(dictionary)
- K.nr() == dictionary.size()
- K.nc() == dictionary.size()
- for all valid r,c:
- K(r,c) == kernel(dictionary[r], dictionary[c])
- K_inv == inv(K)
- strengths.size() == dictionary.size()
- if (strengths.size() == my_max_dictionary_size) then
- for all valid i:
- strengths[i] == the delta (i.e. Approximately Linearly Dependent value) you
would get if you removed dictionary[i] from this object and then tried to
add it back in.
- min_strength == the minimum value from strengths
- min_vect_idx == the index of the element in strengths with the smallest value
!*/
public:
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
linearly_independent_subset_finder (
const kernel_type& kernel_,
unsigned long max_dictionary_size_
) :
kernel(kernel_),
my_max_dictionary_size(max_dictionary_size_)
{
clear_dictionary();
}
unsigned long max_dictionary_size() const
{
return my_max_dictionary_size;
}
const kernel_type& get_kernel (
) const
{
return kernel;
}
void clear_dictionary ()
{
dictionary.clear();
min_strength = 0;
min_vect_idx = 0;
strengths.clear();
K_inv.set_size(0,0);
K.set_size(0,0);
}
void add (
const sample_type& x
)
{
const scalar_type kx = kernel(x,x);
if (dictionary.size() == 0)
{
// set initial state since this is the first sample we have seen
K_inv.set_size(1,1);
K_inv(0,0) = 1/kx;
K.set_size(1,1);
K(0,0) = kx;
dictionary.push_back(x);
}
else
{
// fill in k
k.set_size(dictionary.size());
for (long r = 0; r < k.nr(); ++r)
k(r) = kernel(x,dictionary[r]);
// compute the error we would have if we approximated the new x sample
// with the dictionary. That is, do the ALD test from the KRLS paper.
a = K_inv*k;
scalar_type delta = kx - trans(k)*a;
// if this new vector is approximately linearly independent of the vectors
// in our dictionary. Or if our dictionary just isn't full yet.
if (delta > min_strength || dictionary.size() < my_max_dictionary_size)
{
if (dictionary.size() == my_max_dictionary_size)
{
const long i = min_vect_idx;
// replace the min strength vector with x
dictionary[i] = x;
// compute reduced K_inv.
// Remove the i'th vector from the inverse kernel matrix. This formula is basically
// just the reverse of the way K_inv is updated by equation 3.14 below.
temp = removerc(K_inv,i,i) - remove_row(colm(K_inv,i)/K_inv(i,i),i)*remove_col(rowm(K_inv,i),i);
// recompute these guys since they were computed with the old
// kernel matrix
k2 = remove_row(k,i);
a2 = temp*k2;
delta = kx - trans(k2)*a2;
// now update temp with the new dictionary vector
// update the middle part of the matrix
set_subm(K_inv, get_rect(temp)) = temp + a2*trans(a2)/delta;
// update the right column of the matrix
set_subm(K_inv, 0, temp.nr(),temp.nr(),1) = -a2/delta;
// update the bottom row of the matrix
set_subm(K_inv, temp.nr(), 0, 1, temp.nr()) = trans(-a2/delta);
// update the bottom right corner of the matrix
K_inv(temp.nr(), temp.nc()) = 1/delta;
// now update the kernel matrix K
for (long r = 0; r < K.nr(); ++r)
{
if (r < i)
{
K(r,i) = k2(r);
K(i,r) = k2(r);
}
else if (r == i)
{
K(i,i) = kx;
}
else
{
K(r,i) = k2(r-1);
K(i,r) = k2(r-1);
}
}
}
else
{
// update K_inv by computing the new one in the temp matrix (equation 3.14)
temp.set_size(K_inv.nr()+1, K_inv.nc()+1);
// update the middle part of the matrix
set_subm(temp, get_rect(K_inv)) = K_inv + a*trans(a)/delta;
// update the right column of the matrix
set_subm(temp, 0, K_inv.nr(),K_inv.nr(),1) = -a/delta;
// update the bottom row of the matrix
set_subm(temp, K_inv.nr(), 0, 1, K_inv.nr()) = trans(-a/delta);
// update the bottom right corner of the matrix
temp(K_inv.nr(), K_inv.nc()) = 1/delta;
// put temp into K_inv
temp.swap(K_inv);
// update K (the kernel matrix)
temp.set_size(K.nr()+1, K.nc()+1);
set_subm(temp, get_rect(K)) = K;
// update the right column of the matrix
set_subm(temp, 0, K.nr(),K.nr(),1) = k;
// update the bottom row of the matrix
set_subm(temp, K.nr(), 0, 1, K.nr()) = trans(k);
temp(K.nr(), K.nc()) = kx;
// put temp into K
temp.swap(K);
// add x to the dictionary
dictionary.push_back(x);
}
// now we have to recompute the strengths in this case
if (dictionary.size() == my_max_dictionary_size)
{
recompute_strengths();
}
}
}
}
void swap (
linearly_independent_subset_finder& item
)
{
exchange(kernel, item.kernel);
dictionary.swap(item.dictionary);
strengths.swap(item.strengths);
exchange(min_strength, item.min_strength);
exchange(min_vect_idx, item.min_vect_idx);
K_inv.swap(item.K_inv);
K.swap(item.K);
exchange(my_max_dictionary_size, item.my_max_dictionary_size);
// non-state temp members
a.swap(item.a);
k.swap(item.k);
a2.swap(item.a2);
k2.swap(item.k2);
temp.swap(item.temp);
}
unsigned long dictionary_size (
) const { return dictionary.size(); }
const matrix<sample_type,0,1,mem_manager_type> get_dictionary (
) const
{
return vector_to_matrix(dictionary);
}
friend void serialize(const linearly_independent_subset_finder& item, std::ostream& out)
{
serialize(item.kernel, out);
serialize(item.dictionary, out);
serialize(item.strengths, out);
serialize(item.min_strength, out);
serialize(item.min_vect_idx, out);
serialize(item.K_inv, out);
serialize(item.K, out);
serialize(item.my_max_dictionary_size, out);
}
friend void deserialize(linearly_independent_subset_finder& item, std::istream& in)
{
deserialize(item.kernel, in);
deserialize(item.dictionary, in);
deserialize(item.strengths, in);
deserialize(item.min_strength, in);
deserialize(item.min_vect_idx, in);
deserialize(item.K_inv, in);
deserialize(item.K, in);
deserialize(item.my_max_dictionary_size, in);
}
const sample_type& operator[] (
unsigned long index
) const
{
return dictionary[index];
}
private:
typedef std_allocator<sample_type, mem_manager_type> alloc_sample_type;
typedef std_allocator<scalar_type, mem_manager_type> alloc_scalar_type;
typedef std::vector<sample_type,alloc_sample_type> dictionary_vector_type;
typedef std::vector<scalar_type,alloc_scalar_type> scalar_vector_type;
void recompute_strengths (
)
/*!
ensures
- #strengths.size() == dictionary.size()
- #min_strength == the minimum value in #strengths
- #min_vect_idx == the index of the minimum value in #strengths
- for all valid i:
- #strengths[i] == the delta you would get if you removed dictionary[i] and
tried to add it back into this object
!*/
{
strengths.resize(dictionary.size());
min_strength = std::numeric_limits<scalar_type>::max();
// here we loop over each dictionary vector and compute what its delta would be if
// we were to remove it from the dictionary and then try to add it back in.
for (unsigned long i = 0; i < strengths.size(); ++i)
{
// compute a2 = K_inv*k but where dictionary vector i has been removed
a2 = (removerc(K_inv,i,i) - remove_row(colm(K_inv,i)/K_inv(i,i),i)*remove_col(rowm(K_inv,i),i)) *
(remove_row(colm(K,i),i));
scalar_type delta = K(i,i) - trans(remove_row(colm(K,i),i))*a2;
strengths[i] = delta;
if (delta < min_strength)
{
min_strength = delta;
min_vect_idx = i;
}
}
}
kernel_type kernel;
dictionary_vector_type dictionary;
scalar_vector_type strengths;
scalar_type min_strength;
unsigned long min_vect_idx;
matrix<scalar_type,0,0,mem_manager_type> K_inv;
matrix<scalar_type,0,0,mem_manager_type> K;
unsigned long my_max_dictionary_size;
// temp variables here just so we don't have to reconstruct them over and over. Thus,
// they aren't really part of the state of this object.
matrix<scalar_type,0,1,mem_manager_type> a, a2;
matrix<scalar_type,0,1,mem_manager_type> k, k2;
matrix<scalar_type,0,0,mem_manager_type> temp;
};
// ----------------------------------------------------------------------------------------
template <typename kernel_type>
void swap(linearly_independent_subset_finder<kernel_type>& a, linearly_independent_subset_finder<kernel_type>& b)
{ a.swap(b); }
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_LISf__
// Copyright (C) 2008 Davis E. King (davisking@users.sourceforge.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_LISf_ABSTRACT_
#ifdef DLIB_LISf_ABSTRACT_
#include "../algs.h"
#include "../serialize.h"
#include "kernel_abstract.h"
namespace dlib
{
template <
typename kernel_type
>
class linearly_independent_subset_finder
{
/*!
REQUIREMENTS ON kernel_type
is a kernel function object as defined in dlib/svm/kernel_abstract.h
INITIAL VALUE
- dictionary_size() == 0
WHAT THIS OBJECT REPRESENTS
This is an implementation of an online algorithm for recursively finding a
set of linearly independent vectors in a kernel induced feature space. To
use it you decide how large you would like the set to be and then you feed it
sample points.
Each time you present it with a new sample point (via this->add()) it either
keeps the current set of independent points unchanged, or if the new point
is "more linearly independent" than one of the points it already has,
it replaces the weakly linearly independent point with the new one.
This object uses the Approximately Linearly Dependent metric described in the paper
The Kernel Recursive Least Squares Algorithm by Yaakov Engel to decide which
points are more linearly independent than others.
!*/
public:
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
linearly_independent_subset_finder (
const kernel_type& kernel_,
unsigned long max_dictionary_size
);
/*!
ensures
- this object is properly initialized
- #get_kernel() == kernel_
- #max_dictionary_size() == max_dictionary_size_
!*/
const kernel_type& get_kernel (
) const;
/*!
ensures
- returns a const reference to the kernel used by this object
!*/
unsigned long max_dictionary_size(
) const;
/*!
ensures
- returns the maximum number of dictionary vectors this object
will accumulate. That is, dictionary_size() will never be
greater than max_dictionary_size().
!*/
void clear_dictionary (
);
/*!
ensures
- clears out all the data (e.g. #dictionary_size() == 0)
!*/
void add (
const sample_type& x
);
/*!
ensures
- if (x is linearly independent of the vectors already in this object) then
- adds x into the dictionary
- if (dictionary_size() < max_dictionary_size()) then
- #dictionary_size() == dictionary_size() + 1
- else
- #dictionary_size() == dictionary_size()
(i.e. the number of vectors in this object doesn't change)
- the least linearly independent vector in this object is removed
!*/
void swap (
linearly_independent_subset_finder& item
);
/*!
ensures
- swaps *this with item
!*/
unsigned long dictionary_size (
) const;
/*!
ensures
- returns the number of vectors in the dictionary.
!*/
const sample_type& operator[] (
unsigned long index
) const;
/*!
requires
- index < dictionary_size()
ensures
- returns the index'th element in the set of linearly independent
vectors contained in this object.
!*/
const matrix<sample_type,0,1,mem_manager_type> get_dictionary (
) const;
/*!
ensures
- returns a column vector that contains all the dictionary
vectors in this object.
!*/
};
// ----------------------------------------------------------------------------------------
template <
typename kernel_type
>
void swap(
linearly_independent_subset_finder<kernel_type>& a,
linearly_independent_subset_finder<kernel_type>& b
) { a.swap(b); }
/*!
provides a global swap function
!*/
template <
typename kernel_type
>
void serialize (
const linearly_independent_subset_finder<kernel_type>& item,
std::ostream& out
);
/*!
provides serialization support for linearly_independent_subset_finder objects
!*/
template <
typename kernel_type
>
void deserialize (
linearly_independent_subset_finder<kernel_type>& item,
std::istream& in
);
/*!
provides serialization support for linearly_independent_subset_finder objects
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_LISf_ABSTRACT_
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment