Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
5e1dc620
Commit
5e1dc620
authored
Nov 11, 2015
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
updated specs
parent
e2a2a26a
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
39 additions
and
3 deletions
+39
-3
tensor_tools.h
dlib/dnn/tensor_tools.h
+39
-3
No files found.
dlib/dnn/tensor_tools.h
View file @
5e1dc620
...
...
@@ -292,6 +292,7 @@ namespace dlib { namespace tt
- dest.nr()==src.nr() || src.nr()==1
- dest.nc()==src.nc() || src.nc()==1
- dest.k()==src.k() || src.k()==1
- is_same_object(src,dest) == false
ensures
- performs: dest = beta*dest + alpha*src
However, how the addition happens depends on the dimensions of src. In
...
...
@@ -316,12 +317,13 @@ namespace dlib { namespace tt
- grad.nc() == 1
- gradient_input.k() == grad.k()
- gradient_input.size() > 0
- is_same_object(grad,gradient_input) == false
ensures
- let BIAS be a tensor with all dimensions equal to 1 except for k which is >= 1.
- let OUT be the output of add(1,OUT,1,BIAS)
- let f(gradient_input,BIAS) == dot(gradient_input,OUT)
- Then this function computes the gradient of f() with respect to BIAS and
adds
it to grad.
- Then this function computes the gradient of f() with respect to BIAS and
assigns
it to grad.
!*/
// ----------------------------------------------------------------------------------------
...
...
@@ -359,6 +361,8 @@ namespace dlib { namespace tt
requires
- The dimensions of data and filters are the same as the ones given
to the last call to setup().
- is_same_object(output,data) == false
- is_same_object(output,filters) == false
ensures
- convolves filters over data.
- filters contains filters.num_samples() filters.
...
...
@@ -380,6 +384,8 @@ namespace dlib { namespace tt
- data_gradient has the same dimensions as the data object give to the last
call to setup().
- gradient_input has the same dimensions as the output of operator().
- is_same_object(data_gradient,filters) == false
- is_same_object(data_gradient,gradient_input) == false
ensures
- let OUT be the output of (*this)(OUT,data,filters).
- let f(data,filters) == dot(OUT, gradient_input)
...
...
@@ -399,10 +405,12 @@ namespace dlib { namespace tt
- data has the same dimensions as the data object give to the last call to
setup().
- gradient_input has the same dimensions as the output of operator().
- is_same_object(filters_gradient,data) == false
- is_same_object(filters_gradient,gradient_input) == false
ensures
- let OUT be the output of (*this)(OUT,data,filters).
- let f(data,filters) == dot(OUT, gradient_input)
- This function finds the gradient of f() with respect to filters and a
dds
- This function finds the gradient of f() with respect to filters and a
ssigns
this gradient to filters_gradient.
!*/
...
...
@@ -444,6 +452,8 @@ namespace dlib { namespace tt
const
tensor
&
src
);
/*!
requires
- is_same_object(dest,src) == false
ensures
- #dest.num_samples() == src.num_samples()
- #dest.k() == src.k()
...
...
@@ -468,6 +478,9 @@ namespace dlib { namespace tt
- have_same_dimensions(gradient_input,dest) == true
- have_same_dimensions(src,grad) == true
- dest contains the result of calling (*this)(dest,src)
- is_same_object(grad,gradient_input) == false
- is_same_object(grad,dest) == false
- is_same_object(grad,src) == false
ensures
- Recalling that dest is the output of (*this)(dest,src),
let f(src) == dot(gradient_input,dest)
...
...
@@ -500,6 +513,8 @@ namespace dlib { namespace tt
the spatial locations in dest (i.e. image idx, row idx, and column idx)
contains the output of s() evaluated over the channel values at each
location.
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/
void
softmax_gradient
(
...
...
@@ -511,11 +526,14 @@ namespace dlib { namespace tt
requires
- have_same_dimensions(softmaxed_data,gradient_input) == true
- have_same_dimensions(softmaxed_data,grad) == true
- is_same_object(grad, softmaxed_data)==false
ensures
- We interpret softmaxed_data as the output of softmax(softmaxed_data,SRC) for
some SRC tensor. Then let f(SRC) == dot(gradient_input,softmaxed_data) Then
this function computes the gradient of f() with respect to SRC and adds it to
grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/
// ----------------------------------------------------------------------------------------
...
...
@@ -529,6 +547,8 @@ namespace dlib { namespace tt
- have_same_dimensions(#dest, src) == true
- for all valid i:
- #dest.host()[i] == 1/(1+std::exp(-src.host()[i]))
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/
void
sigmoid_gradient
(
...
...
@@ -543,11 +563,15 @@ namespace dlib { namespace tt
- have_same_dimensions(src,grad) == true
- have_same_dimensions(src,dest) == true
- dest contains the result of calling sigmoid(dest,src)
- is_same_object(grad,src) == false
- is_same_object(grad,dest) == false
ensures
- Recalling that dest is the output of sigmoid(dest,src),
let f(src) == dot(gradient_input,dest)
- Then this function computes the gradient of f() with respect to src and
adds it to grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/
// ----------------------------------------------------------------------------------------
...
...
@@ -561,6 +585,8 @@ namespace dlib { namespace tt
- have_same_dimensions(#dest, src) == true
- for all valid i:
- #dest.host()[i] == std::max(0,src.host()[i])
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/
void
relu_gradient
(
...
...
@@ -575,11 +601,15 @@ namespace dlib { namespace tt
- have_same_dimensions(src,grad) == true
- have_same_dimensions(src,dest) == true
- dest contains the result of calling relu(dest,src)
- is_same_object(grad,src) == false
- is_same_object(grad,dest) == false
ensures
- Recalling that dest is the output of relu(dest,src),
let f(src) == dot(gradient_input,dest)
- Then this function computes the gradient of f() with respect to src and adds
it to grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/
// ----------------------------------------------------------------------------------------
...
...
@@ -593,6 +623,8 @@ namespace dlib { namespace tt
- have_same_dimensions(#dest, src) == true
- for all valid i:
- #dest.host()[i] == std::tanh(src.host()[i])
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/
void
tanh_gradient
(
...
...
@@ -607,11 +639,15 @@ namespace dlib { namespace tt
- have_same_dimensions(src,grad) == true
- have_same_dimensions(src,dest) == true
- dest contains the result of calling tanh(dest,src)
- is_same_object(grad,src) == false
- is_same_object(grad,dest) == false
ensures
- Recalling that dest is the output of tanh(dest,src),
let f(src) == dot(gradient_input,dest)
- Then this function computes the gradient of f() with respect to src and adds
it to grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/
// ----------------------------------------------------------------------------------------
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment