Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
5e9df653
Commit
5e9df653
authored
Apr 29, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added initial version of structural_svm_potts_problem object.
parent
9f607bc5
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
310 additions
and
0 deletions
+310
-0
structural_svm_potts_problem.h
dlib/svm/structural_svm_potts_problem.h
+308
-0
structural_svm_potts_problem_abstract.h
dlib/svm/structural_svm_potts_problem_abstract.h
+2
-0
No files found.
dlib/svm/structural_svm_potts_problem.h
0 → 100644
View file @
5e9df653
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_STRUCTURAL_SVM_POtTS_PROBLEM_H__
#define DLIB_STRUCTURAL_SVM_POtTS_PROBLEM_H__
#include "structural_svm_potts_problem_abstract.h"
#include "../graph_cuts.h"
#include "../matrix.h"
#include "../array.h"
#include <vector>
#include <iterator>
#include "structural_svm_problem_threaded.h"
#include "../graph.h"
// ----------------------------------------------------------------------------------------
namespace
dlib
{
namespace
impl
{
template
<
typename
T
,
typename
enable
=
void
>
struct
fvect
{
// In this case type should be some sparse vector type
typedef
typename
T
::
type
type
;
};
template
<
typename
T
>
struct
fvect
<
T
,
typename
enable_if
<
is_matrix
<
typename
T
::
type
>
>::
type
>
{
// The point of this stuff is to create the proper matrix
// type to represent the concatenation of an edge vector
// with an node vector.
typedef
typename
T
::
type
node_mat
;
typedef
typename
T
::
edge_type
edge_mat
;
const
static
long
NRd
=
node_mat
::
NR
;
const
static
long
NRe
=
edge_mat
::
NR
;
const
static
long
NR
=
((
NRd
!=
0
)
&&
(
NRe
!=
0
))
?
(
NRd
+
NRe
)
:
0
;
typedef
typename
node_mat
::
value_type
value_type
;
typedef
matrix
<
value_type
,
NR
,
1
,
typename
node_mat
::
mem_manager_type
,
typename
node_mat
::
layout_type
>
type
;
};
}
// ----------------------------------------------------------------------------------------
template
<
typename
graph_type
>
class
structural_svm_potts_problem
:
noncopyable
,
public
structural_svm_problem_threaded
<
matrix
<
double
,
0
,
1
>
,
typename
dlib
::
impl
::
fvect
<
graph_type
>::
type
>
{
public
:
typedef
matrix
<
double
,
0
,
1
>
matrix_type
;
typedef
typename
dlib
::
impl
::
fvect
<
graph_type
>::
type
feature_vector_type
;
typedef
graph_type
sample_type
;
typedef
std
::
vector
<
node_label
>
label_type
;
structural_svm_potts_problem
(
const
dlib
::
array
<
sample_type
>&
samples_
,
const
std
::
vector
<
label_type
>&
labels_
,
unsigned
long
num_threads
=
2
)
:
structural_svm_problem_threaded
<
matrix_type
,
feature_vector_type
>
(
num_threads
),
samples
(
samples_
),
labels
(
labels_
)
{
// make sure requires clause is not broken
// TODO
// requires, at least one edge in the dataset. All edge vectors have same number
// of dims. All node vectors have same number of dims. none of the dims can be 0.
// all elements in a edge vector must be >= 0.
// Figure out how many dimensions are in a node vector. Just pick
// the first node we find and use it as the representative example.
node_dims
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
samples
.
size
();
++
i
)
{
if
(
samples
[
i
].
number_of_nodes
()
>
0
)
{
node_dims
=
samples
[
i
].
node
(
0
).
data
.
size
();
break
;
}
}
// Figure out how many dimensions are in an edge vector. Just pick
// the first edge we find and use it as the representative example.
edge_dims
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
samples
.
size
();
++
i
)
{
for
(
unsigned
long
j
=
0
;
j
<
samples
[
i
].
number_of_nodes
();
++
j
)
{
if
(
samples
[
i
].
node
(
j
).
number_of_neighbors
()
!=
0
)
{
edge_dims
=
samples
[
i
].
node
(
j
).
edge
(
0
).
size
();
break
;
}
}
// if we found an edge then stop
if
(
edge_dims
!=
0
)
break
;
}
}
long
get_num_nonnegative_dimensions
(
)
const
/*!
ensures
- returns the number of dimensions of the solution vector which
are required to be non-negative. This is equal to the number of
dimensions for a feature vector on a graph edge.
!*/
{
return
edge_dims
;
}
private
:
virtual
long
get_num_dimensions
(
)
const
{
// The psi/w vector will begin with all the edge dims and then follow with the node dims.
return
edge_dims
+
node_dims
;
}
virtual
long
get_num_samples
(
)
const
{
return
samples
.
size
();
}
template
<
typename
psi_type
>
typename
enable_if
<
is_matrix
<
psi_type
>
>::
type
get_joint_feature_vector
(
const
sample_type
&
sample
,
const
label_type
&
label
,
psi_type
&
psi
)
const
{
psi
.
set_size
(
get_num_dimensions
());
psi
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
sample
.
number_of_nodes
();
++
i
)
{
const
bool
label_i
=
(
label
[
i
]
!=
0
);
// accumulate the node vectors
if
(
label_i
==
true
)
set_rowm
(
psi
,
range
(
edge_dims
,
psi
.
size
()
-
1
))
=
rowm
(
psi
,
range
(
edge_dims
,
psi
.
size
()
-
1
))
+
sample
.
node
(
i
).
data
;
for
(
unsigned
long
n
=
0
;
n
<
sample
.
node
(
i
).
number_of_neighbors
();
++
n
)
{
const
unsigned
long
j
=
sample
.
node
(
i
).
neighbor
(
n
).
index
();
const
bool
label_j
=
(
label
[
j
]
!=
0
);
// Don't double count edges. Also only include the vector if
// the labels disagree.
if
(
i
<
j
&&
label_i
!=
label_j
)
{
set_rowm
(
psi
,
range
(
0
,
edge_dims
-
1
))
=
rowm
(
psi
,
range
(
0
,
edge_dims
-
1
))
-
sample
.
node
(
i
).
edge
(
n
);
}
}
}
}
template
<
typename
T
>
void
add_to_sparse_vect
(
T
&
psi
,
const
T
&
vect
,
unsigned
long
offset
)
const
{
for
(
unsigned
long
i
=
0
;
i
<
vect
.
size
();
++
i
)
{
psi
.
push_back
(
std
::
make_pair
(
vect
[
i
].
first
+
offset
,
vect
[
i
].
second
));
}
}
template
<
typename
T
>
void
subtract_from_sparse_vect
(
T
&
psi
,
const
T
&
vect
)
const
{
for
(
unsigned
long
i
=
0
;
i
<
vect
.
size
();
++
i
)
{
psi
.
push_back
(
std
::
make_pair
(
vect
[
i
].
first
,
-
vect
[
i
].
second
));
}
}
template
<
typename
psi_type
>
typename
disable_if
<
is_matrix
<
psi_type
>
>::
type
get_joint_feature_vector
(
const
sample_type
&
sample
,
const
label_type
&
label
,
psi_type
&
psi
)
const
{
psi
.
clear
();
for
(
unsigned
long
i
=
0
;
i
<
sample
.
number_of_nodes
();
++
i
)
{
const
bool
label_i
=
(
label
[
i
]
!=
0
);
// accumulate the node vectors
if
(
label_i
==
true
)
add_to_sparse_vect
(
psi
,
sample
.
node
(
i
).
data
,
edge_dims
);
for
(
unsigned
long
n
=
0
;
n
<
sample
.
node
(
i
).
number_of_neighbors
();
++
n
)
{
const
unsigned
long
j
=
sample
.
node
(
i
).
neighbor
(
n
).
index
();
const
bool
label_j
=
(
label
[
j
]
!=
0
);
// Don't double count edges. Also only include the vector if
// the labels disagree.
if
(
i
<
j
&&
label_i
!=
label_j
)
{
subtract_from_sparse_vect
(
psi
,
sample
.
node
(
i
).
edge
(
n
));
}
}
}
}
virtual
void
get_truth_joint_feature_vector
(
long
idx
,
feature_vector_type
&
psi
)
const
{
get_joint_feature_vector
(
samples
[
idx
],
labels
[
idx
],
psi
);
}
virtual
void
separation_oracle
(
const
long
idx
,
const
matrix_type
&
current_solution
,
double
&
loss
,
feature_vector_type
&
psi
)
const
{
using
dlib
::
sparse_vector
::
dot
;
using
dlib
::
dot
;
const
sample_type
&
samp
=
samples
[
idx
];
// setup the potts graph based on samples[idx] and current_solution.
graph
<
double
,
double
>::
kernel_1a_c
g
;
// TODO, remove _c
copy_graph_structure
(
samp
,
g
);
for
(
unsigned
long
i
=
0
;
i
<
g
.
number_of_nodes
();
++
i
)
{
g
.
node
(
i
).
data
=
dot
(
rowm
(
current_solution
,
range
(
edge_dims
,
current_solution
.
size
()
-
1
)),
samp
.
node
(
i
).
data
);
// Include a loss augmentation so that we will get the proper loss augmented
// max when we use find_max_factor_graph_potts() below.
const
bool
label_i
=
(
labels
[
idx
][
i
]
!=
0
);
if
(
label_i
)
g
.
node
(
i
).
data
-=
1
.
0
;
else
g
.
node
(
i
).
data
+=
1
.
0
;
for
(
unsigned
long
n
=
0
;
n
<
g
.
node
(
i
).
number_of_neighbors
();
++
n
)
{
const
unsigned
long
j
=
g
.
node
(
i
).
neighbor
(
n
).
index
();
// Don't compute an edge weight more than once.
if
(
i
<
j
)
{
g
.
node
(
i
).
edge
(
n
)
=
dot
(
rowm
(
current_solution
,
range
(
0
,
edge_dims
-
1
)),
samp
.
node
(
i
).
edge
(
n
));
}
}
}
std
::
vector
<
node_label
>
labeling
;
find_max_factor_graph_potts
(
g
,
labeling
);
// figure out the loss
loss
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
labeling
.
size
();
++
i
)
{
const
bool
true_label
=
(
labels
[
idx
][
i
]
!=
0
);
const
bool
pred_label
=
(
labeling
[
i
]
!=
0
);
if
(
true_label
!=
pred_label
)
++
loss
;
}
// compute psi
get_joint_feature_vector
(
samp
,
labeling
,
psi
);
}
const
dlib
::
array
<
sample_type
>&
samples
;
const
std
::
vector
<
label_type
>&
labels
;
long
node_dims
;
long
edge_dims
;
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_STRUCTURAL_SVM_POtTS_PROBLEM_H__
dlib/svm/structural_svm_potts_problem_abstract.h
0 → 100644
View file @
5e9df653
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment