Commit 69d481ca authored by Davis King's avatar Davis King

Added an initial cut of the rvm stuff

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%402456
parent 3dd1af02
...@@ -11,6 +11,7 @@ ...@@ -11,6 +11,7 @@
#include "svm/rbf_network.h" #include "svm/rbf_network.h"
#include "svm/linearly_independent_subset_finder.h" #include "svm/linearly_independent_subset_finder.h"
#include "svm/reduced.h" #include "svm/reduced.h"
#include "svm/rvm.h"
#endif // DLIB_SVm_HEADER #endif // DLIB_SVm_HEADER
......
This diff is collapsed.
// Copyright (C) 2008 Davis E. King (davisking@users.sourceforge.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_RVm_ABSTRACT_
#ifdef DLIB_RVm_ABSTRACT_
#include "rvm_abstract.h"
#include <cmath>
#include <limits>
#include "../matrix.h"
#include "../algs.h"
#include "function.h"
#include "kernel.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename kern_type
>
class rvm_trainer
{
/*!
REQUIREMENTS ON kern_type
is a kernel function object as defined in dlib/svm/kernel_abstract.h
WHAT THIS OBJECT REPRESENTS
This object implements a trainer for a relevance vector machine for
solving binary classification problems.
The implementation of the RVM training algorithm used by this object is based
on the following excellent paper:
Tipping, M. E. and A. C. Faul (2003). Fast marginal likelihood maximisation
for sparse Bayesian models. In C. M. Bishop and B. J. Frey (Eds.), Proceedings
of the Ninth International Workshop on Artificial Intelligence and Statistics,
Key West, FL, Jan 3-6.
!*/
public:
typedef kern_type kernel_type;
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
typedef decision_function<kernel_type> trained_function_type;
rvm_trainer (
);
/*!
ensures
- This object is properly initialized and ready to be used
to train a relevance vector machine.
- #get_epsilon() == 0.001
!*/
void set_kernel (
const kernel_type& k
);
/*!
ensures
- #get_kernel() == k
!*/
const kernel_type& get_kernel (
) const;
/*!
ensures
- returns a copy of the kernel function in use by this object
!*/
void set_epsilon (
scalar_type eps_
);
/*!
requires
- eps > 0
ensures
- #get_epsilon() == eps
!*/
const scalar_type get_epsilon (
) const;
/*!
ensures
- returns the error epsilon that determines when training should stop.
Generally a good value for this is 0.001. Smaller values may result
in a more accurate solution but take longer to execute.
!*/
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const;
/*!
requires
- is_binary_classification_problem(x,y) == true
- x == a matrix or something convertible to a matrix via vector_to_matrix().
Also, x should contain sample_type objects.
- y == a matrix or something convertible to a matrix via vector_to_matrix().
Also, y should contain scalar_type objects.
ensures
- trains a relevance vector classifier given the training samples in x and
labels in y. Training is done when the error is less than get_epsilon().
- returns a decision function F with the following properties:
- if (new_x is a sample predicted have +1 label) then
- F(new_x) >= 0
- else
- F(new_x) < 0
throws
- std::bad_alloc
!*/
void swap (
rvm_trainer& item
);
/*!
ensures
- swaps *this and item
!*/
};
// ----------------------------------------------------------------------------------------
template <typename K>
void swap (
rvm_trainer<K>& a,
rvm_trainer<K>& b
) { a.swap(b); }
/*!
provides a global swap
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_RVm_ABSTRACT_
...@@ -119,7 +119,6 @@ namespace dlib ...@@ -119,7 +119,6 @@ namespace dlib
ensures ensures
- This object is properly initialized and ready to be used - This object is properly initialized and ready to be used
to train a support vector machine. to train a support vector machine.
- #get_kernel() == kernel_type()
- #get_nu() == 0.1 - #get_nu() == 0.1
- #get_cache_size() == 200 - #get_cache_size() == 200
- #get_epsilon() == 0.001 - #get_epsilon() == 0.001
...@@ -229,9 +228,9 @@ namespace dlib ...@@ -229,9 +228,9 @@ namespace dlib
/*! /*!
requires requires
- is_binary_classification_problem(x,y) == true - is_binary_classification_problem(x,y) == true
- x == a matrix or something convertable to a matrix via vector_to_matrix(). - x == a matrix or something convertible to a matrix via vector_to_matrix().
Also, x should contain sample_type objects. Also, x should contain sample_type objects.
- y == a matrix or something convertable to a matrix via vector_to_matrix(). - y == a matrix or something convertible to a matrix via vector_to_matrix().
Also, y should contain scalar_type objects. Also, y should contain scalar_type objects.
ensures ensures
- trains a nu support vector classifier given the training samples in x and - trains a nu support vector classifier given the training samples in x and
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment