Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
6c05ff45
Commit
6c05ff45
authored
Nov 08, 2015
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added CPU version of batch normalization functions
parent
141b384b
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
570 additions
and
0 deletions
+570
-0
CMakeLists.txt
dlib/CMakeLists.txt
+6
-0
source.cpp
dlib/all/source.cpp
+5
-0
dnn.h
dlib/dnn.h
+1
-0
cpu_dlib.cpp
dlib/dnn/cpu_dlib.cpp
+441
-0
cpu_dlib.h
dlib/dnn/cpu_dlib.h
+117
-0
No files found.
dlib/CMakeLists.txt
View file @
6c05ff45
...
...
@@ -135,6 +135,12 @@ if (NOT TARGET dlib)
data_io/image_dataset_metadata.cpp
data_io/mnist.cpp
)
if
(
COMPILER_CAN_DO_CPP_11
)
set
(
source_files
${
source_files
}
dnn/cpu_dlib.cpp
)
endif
()
if
(
DLIB_ISO_CPP_ONLY
)
add_library
(
dlib STATIC
${
source_files
}
)
if
(
UNIX AND NOT DLIB_IN_PROJECT_BUILD
)
...
...
dlib/all/source.cpp
View file @
6c05ff45
...
...
@@ -18,6 +18,11 @@
#include "../data_io/image_dataset_metadata.cpp"
#include "../data_io/mnist.cpp"
// Stuff that requires C++11
#if __cplusplus >= 201103
#include "../dnn/cpu_dlib.cpp"
#endif
#ifndef DLIB_ISO_CPP_ONLY
// Code that depends on OS specific APIs
...
...
dlib/dnn.h
View file @
6c05ff45
...
...
@@ -10,6 +10,7 @@
#include "dnn/core.h"
#include "dnn/solvers.h"
#include "dnn/trainer.h"
#include "dnn/cpu_dlib.h"
#endif // DLIB_DNn_
...
...
dlib/dnn/cpu_dlib.cpp
0 → 100644
View file @
6c05ff45
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_DNN_CPU_cPP_
#define DLIB_DNN_CPU_cPP_
// This file contains CPU implementations of the GPU based functions in cuda_dlib.h
#include "cpu_dlib.h"
namespace
dlib
{
namespace
cpu
{
// -----------------------------------------------------------------------------------
void
affine_transform
(
resizable_tensor
&
dest
,
const
tensor
&
src
,
const
float
A
,
const
float
B
)
{
// TODO
}
// -----------------------------------------------------------------------------------
void
affine_transform
(
resizable_tensor
&
dest
,
const
tensor
&
src
,
const
tensor
&
A
,
const
tensor
&
B
)
{
// TODO
}
// -----------------------------------------------------------------------------------
void
batch_normalize
(
resizable_tensor
&
dest
,
resizable_tensor
&
means
,
resizable_tensor
&
vars
,
const
tensor
&
src
,
const
tensor
&
gamma
,
const
tensor
&
beta
)
{
DLIB_CASSERT
(
src
.
num_samples
()
>
1
&&
gamma
.
num_samples
()
==
1
&&
beta
.
num_samples
()
==
1
&&
gamma
.
nr
()
==
beta
.
nr
()
&&
beta
.
nr
()
==
src
.
nr
()
&&
gamma
.
nc
()
==
beta
.
nc
()
&&
beta
.
nc
()
==
src
.
nc
()
&&
gamma
.
k
()
==
beta
.
k
()
&&
beta
.
k
()
==
src
.
k
(),
"
\n
gamma.num_samples(): "
<<
gamma
.
num_samples
()
<<
"
\n
gamma.k(): "
<<
gamma
.
k
()
<<
"
\n
gamma.nr(): "
<<
gamma
.
nr
()
<<
"
\n
gamma.nc(): "
<<
gamma
.
nc
()
<<
"
\n
beta.num_samples(): "
<<
beta
.
num_samples
()
<<
"
\n
beta.k(): "
<<
beta
.
k
()
<<
"
\n
beta.nr(): "
<<
beta
.
nr
()
<<
"
\n
beta.nc(): "
<<
beta
.
nc
()
<<
"
\n
src.k(): "
<<
src
.
k
()
<<
"
\n
src.nr(): "
<<
src
.
nr
()
<<
"
\n
src.nc(): "
<<
src
.
nc
()
);
dest
.
copy_size
(
src
);
means
.
set_size
(
1
,
src
.
k
(),
src
.
nr
(),
src
.
nc
());
vars
.
set_size
(
1
,
src
.
k
(),
src
.
nr
(),
src
.
nc
());
// first compute means and vars
means
=
0
;
vars
=
0
;
const
auto
p_vars
=
vars
.
host
();
const
auto
p_means
=
means
.
host
();
auto
p_src
=
src
.
host
();
const
long
num
=
src
.
k
()
*
src
.
nr
()
*
src
.
nc
();
// compute means, and sum of squares
for
(
long
i
=
0
;
i
<
num
;
++
i
)
{
for
(
long
n
=
0
;
n
<
src
.
num_samples
();
++
n
)
{
float
val
=
p_src
[
n
*
num
+
i
];
p_means
[
i
]
+=
val
;
p_vars
[
i
]
+=
val
*
val
;
}
}
means
/=
src
.
num_samples
();
vars
/=
src
.
num_samples
();
// copy data back to host
vars
.
host
();
means
.
host
();
p_src
=
src
.
host
();
// compute variances
for
(
long
i
=
0
;
i
<
num
;
++
i
)
{
p_vars
[
i
]
=
p_vars
[
i
]
-
p_means
[
i
]
*
p_means
[
i
];
}
// TODO, must match eps in batch_normalize_gradient() so make this a shared variable.
const
float
eps
=
0.00001
;
p_src
=
src
.
host
();
auto
p_dest
=
dest
.
host
();
const
auto
p_gamma
=
gamma
.
host
();
const
auto
p_beta
=
beta
.
host
();
for
(
long
n
=
0
;
n
<
src
.
num_samples
();
++
n
)
{
for
(
long
i
=
0
;
i
<
num
;
++
i
)
{
*
p_dest
=
(
*
p_src
-
p_means
[
i
])
/
std
::
sqrt
(
p_vars
[
i
]
+
eps
);
*
p_dest
=
(
*
p_dest
)
*
p_gamma
[
i
]
+
p_beta
[
i
];
++
p_src
;
++
p_dest
;
}
}
}
void
batch_normalize_gradient
(
const
tensor
&
gradient_input
,
const
tensor
&
means
,
const
tensor
&
vars
,
const
tensor
&
src
,
const
tensor
&
gamma
,
tensor
&
src_grad
,
tensor
&
gamma_grad
,
tensor
&
beta_grad
)
{
const
float
eps
=
0.00001
;
const
long
num
=
src
.
k
()
*
src
.
nr
()
*
src
.
nc
();
DLIB_CASSERT
(
num
==
means
.
size
(),
""
);
DLIB_CASSERT
(
num
==
vars
.
size
(),
""
);
DLIB_CASSERT
(
num
==
gamma
.
size
(),
""
);
DLIB_CASSERT
(
num
==
gamma_grad
.
size
(),
""
);
DLIB_CASSERT
(
num
==
beta_grad
.
size
(),
""
);
DLIB_CASSERT
(
have_same_dimensions
(
gradient_input
,
src
),
""
);
DLIB_CASSERT
(
have_same_dimensions
(
gradient_input
,
src_grad
),
""
);
auto
p_grad
=
gradient_input
.
host
();
auto
p_src
=
src
.
host
();
const
auto
p_gamma
=
gamma
.
host
();
const
auto
p_gamma_grad
=
gamma_grad
.
host
();
const
auto
p_beta_grad
=
beta_grad
.
host
();
const
auto
p_vars
=
vars
.
host
();
const
auto
p_means
=
means
.
host
();
resizable_tensor
dvars
,
dmeans
;
dvars
.
copy_size
(
vars
);
dmeans
.
copy_size
(
means
);
dvars
=
0
;
dmeans
=
0
;
const
auto
p_dvars
=
dvars
.
host
();
const
auto
p_dmeans
=
dmeans
.
host
();
for
(
long
n
=
0
;
n
<
src
.
num_samples
();
++
n
)
{
for
(
long
i
=
0
;
i
<
num
;
++
i
)
{
const
float
x_hat
=
(
*
p_src
-
p_means
[
i
])
/
std
::
sqrt
(
p_vars
[
i
]
+
eps
);
p_beta_grad
[
i
]
+=
*
p_grad
;
p_gamma_grad
[
i
]
+=
(
*
p_grad
)
*
x_hat
;
const
float
dx
=
*
p_grad
*
p_gamma
[
i
];
p_dvars
[
i
]
+=
dx
*
(
*
p_src
-
p_means
[
i
])
*
-
0.5
*
std
::
pow
(
p_vars
[
i
]
+
eps
,
-
3.0
f
/
2
);
++
p_grad
;
++
p_src
;
}
}
p_grad
=
gradient_input
.
host
();
p_src
=
src
.
host
();
for
(
long
n
=
0
;
n
<
src
.
num_samples
();
++
n
)
{
for
(
long
i
=
0
;
i
<
num
;
++
i
)
{
const
float
dx
=
*
p_grad
*
p_gamma
[
i
];
p_dmeans
[
i
]
+=
dx
*-
1
/
std
::
sqrt
(
p_vars
[
i
]
+
eps
)
+
p_dvars
[
i
]
*
-
2
*
(
*
p_src
-
p_means
[
i
])
/
src
.
num_samples
();
++
p_grad
;
++
p_src
;
}
}
p_grad
=
gradient_input
.
host
();
p_src
=
src
.
host
();
auto
p_src_grad
=
src_grad
.
host
();
for
(
long
n
=
0
;
n
<
src
.
num_samples
();
++
n
)
{
for
(
long
i
=
0
;
i
<
num
;
++
i
)
{
const
float
dx
=
*
p_grad
*
p_gamma
[
i
];
*
p_src_grad
+=
dx
/
std
::
sqrt
(
p_vars
[
i
]
+
eps
)
+
p_dvars
[
i
]
*
2
*
(
*
p_src
-
p_means
[
i
])
/
src
.
num_samples
()
+
p_dmeans
[
i
]
/
src
.
num_samples
();
++
p_grad
;
++
p_src
;
++
p_src_grad
;
}
}
}
// ----------------------------------------------------------------------------------------
void
batch_normalize_conv
(
resizable_tensor
&
dest
,
resizable_tensor
&
means
,
resizable_tensor
&
vars
,
const
tensor
&
src
,
const
tensor
&
gamma
,
const
tensor
&
beta
)
{
DLIB_CASSERT
(
src
.
num_samples
()
>
1
&&
gamma
.
num_samples
()
==
1
&&
beta
.
num_samples
()
==
1
&&
gamma
.
nr
()
==
1
&&
beta
.
nr
()
==
1
&&
gamma
.
nc
()
==
1
&&
beta
.
nc
()
==
1
&&
gamma
.
k
()
==
beta
.
k
()
&&
beta
.
k
()
==
src
.
k
(),
"
\n
gamma.num_samples(): "
<<
gamma
.
num_samples
()
<<
"
\n
gamma.k(): "
<<
gamma
.
k
()
<<
"
\n
gamma.nr(): "
<<
gamma
.
nr
()
<<
"
\n
gamma.nc(): "
<<
gamma
.
nc
()
<<
"
\n
beta.num_samples(): "
<<
beta
.
num_samples
()
<<
"
\n
beta.k(): "
<<
beta
.
k
()
<<
"
\n
beta.nr(): "
<<
beta
.
nr
()
<<
"
\n
beta.nc(): "
<<
beta
.
nc
()
<<
"
\n
src.k(): "
<<
src
.
k
()
<<
"
\n
src.nr(): "
<<
src
.
nr
()
<<
"
\n
src.nc(): "
<<
src
.
nc
()
);
dest
.
copy_size
(
src
);
means
.
set_size
(
1
,
src
.
k
());
vars
.
set_size
(
1
,
src
.
k
());
// first compute means and vars
means
=
0
;
vars
=
0
;
const
auto
p_vars
=
vars
.
host
();
const
auto
p_means
=
means
.
host
();
const
auto
p_gamma
=
gamma
.
host
();
const
auto
p_beta
=
beta
.
host
();
auto
p_src
=
src
.
host
();
const
long
num
=
src
.
nr
()
*
src
.
nc
();
// compute means, and sum of squares
for
(
long
n
=
0
;
n
<
src
.
num_samples
();
++
n
)
{
for
(
long
k
=
0
;
k
<
src
.
k
();
++
k
)
{
for
(
long
i
=
0
;
i
<
num
;
++
i
)
{
p_means
[
k
]
+=
*
p_src
;
p_vars
[
k
]
+=
(
*
p_src
)
*
(
*
p_src
);
++
p_src
;
}
}
}
means
/=
src
.
num_samples
()
*
num
;
vars
/=
src
.
num_samples
()
*
num
;
// copy data back to host
vars
.
host
();
means
.
host
();
p_src
=
src
.
host
();
// compute variances
for
(
long
k
=
0
;
k
<
src
.
k
();
++
k
)
{
p_vars
[
k
]
=
p_vars
[
k
]
-
p_means
[
k
]
*
p_means
[
k
];
}
// TODO, must match eps in batch_normalize_gradient() so make this a shared variable.
const
float
eps
=
0.00001
;
p_src
=
src
.
host
();
auto
p_dest
=
dest
.
host
();
for
(
long
n
=
0
;
n
<
src
.
num_samples
();
++
n
)
{
for
(
long
k
=
0
;
k
<
src
.
k
();
++
k
)
{
for
(
long
i
=
0
;
i
<
num
;
++
i
)
{
*
p_dest
=
(
*
p_src
-
p_means
[
k
])
/
std
::
sqrt
(
p_vars
[
k
]
+
eps
);
*
p_dest
=
(
*
p_dest
)
*
p_gamma
[
k
]
+
p_beta
[
k
];
++
p_src
;
++
p_dest
;
}
}
}
}
void
batch_normalize_conv_gradient
(
const
tensor
&
gradient_input
,
const
tensor
&
means
,
const
tensor
&
vars
,
const
tensor
&
src
,
const
tensor
&
gamma
,
tensor
&
src_grad
,
tensor
&
gamma_grad
,
tensor
&
beta_grad
)
{
const
float
eps
=
0.00001
;
const
long
num
=
src
.
nr
()
*
src
.
nc
();
DLIB_CASSERT
(
src
.
k
()
==
means
.
size
(),
""
);
DLIB_CASSERT
(
src
.
k
()
==
vars
.
size
(),
""
);
DLIB_CASSERT
(
src
.
k
()
==
gamma
.
size
(),
""
);
DLIB_CASSERT
(
src
.
k
()
==
gamma_grad
.
size
(),
""
);
DLIB_CASSERT
(
src
.
k
()
==
beta_grad
.
size
(),
""
);
DLIB_CASSERT
(
have_same_dimensions
(
gradient_input
,
src
),
""
);
DLIB_CASSERT
(
have_same_dimensions
(
gradient_input
,
src_grad
),
""
);
auto
p_grad
=
gradient_input
.
host
();
auto
p_src
=
src
.
host
();
const
auto
p_gamma
=
gamma
.
host
();
const
auto
p_gamma_grad
=
gamma_grad
.
host
();
const
auto
p_beta_grad
=
beta_grad
.
host
();
const
auto
p_vars
=
vars
.
host
();
const
auto
p_means
=
means
.
host
();
resizable_tensor
dvars
,
dmeans
;
dvars
.
copy_size
(
vars
);
dmeans
.
copy_size
(
means
);
dvars
=
0
;
dmeans
=
0
;
const
auto
p_dvars
=
dvars
.
host
();
const
auto
p_dmeans
=
dmeans
.
host
();
for
(
long
n
=
0
;
n
<
src
.
num_samples
();
++
n
)
{
for
(
long
k
=
0
;
k
<
src
.
k
();
++
k
)
{
for
(
long
i
=
0
;
i
<
num
;
++
i
)
{
const
float
x_hat
=
(
*
p_src
-
p_means
[
k
])
/
std
::
sqrt
(
p_vars
[
k
]
+
eps
);
p_beta_grad
[
k
]
+=
*
p_grad
;
p_gamma_grad
[
k
]
+=
(
*
p_grad
)
*
x_hat
;
const
float
dx
=
*
p_grad
*
p_gamma
[
k
];
p_dvars
[
k
]
+=
dx
*
(
*
p_src
-
p_means
[
k
])
*
-
0.5
*
std
::
pow
(
p_vars
[
k
]
+
eps
,
-
3.0
f
/
2
);
++
p_grad
;
++
p_src
;
}
}
}
p_grad
=
gradient_input
.
host
();
p_src
=
src
.
host
();
for
(
long
n
=
0
;
n
<
src
.
num_samples
();
++
n
)
{
for
(
long
k
=
0
;
k
<
src
.
k
();
++
k
)
{
for
(
long
i
=
0
;
i
<
num
;
++
i
)
{
const
float
dx
=
*
p_grad
*
p_gamma
[
k
];
p_dmeans
[
k
]
+=
dx
*-
1
/
std
::
sqrt
(
p_vars
[
k
]
+
eps
)
+
p_dvars
[
k
]
*
-
2
*
(
*
p_src
-
p_means
[
k
])
/
src
.
num_samples
()
/
num
;
++
p_grad
;
++
p_src
;
}
}
}
p_grad
=
gradient_input
.
host
();
p_src
=
src
.
host
();
auto
p_src_grad
=
src_grad
.
host
();
for
(
long
n
=
0
;
n
<
src
.
num_samples
();
++
n
)
{
for
(
long
k
=
0
;
k
<
src
.
k
();
++
k
)
{
for
(
long
i
=
0
;
i
<
num
;
++
i
)
{
const
float
dx
=
*
p_grad
*
p_gamma
[
k
];
*
p_src_grad
+=
dx
/
std
::
sqrt
(
p_vars
[
k
]
+
eps
)
+
p_dvars
[
k
]
*
2
*
(
*
p_src
-
p_means
[
k
])
/
src
.
num_samples
()
/
num
+
p_dmeans
[
k
]
/
src
.
num_samples
()
/
num
;
++
p_grad
;
++
p_src
;
++
p_src_grad
;
}
}
}
}
// -----------------------------------------------------------------------------------
dropout
::
dropout
(
float
drop_rate
)
{
}
dropout
::
dropout
(
float
drop_rate
,
int
seed
)
{
}
void
dropout
::
operator
()
(
resizable_tensor
&
dest
,
resizable_tensor
&
random_mask
,
const
tensor
&
src
)
{
}
void
dropout
::
get_gradient
(
const
tensor
&
gradient_input
,
const
tensor
&
random_mask
,
tensor
&
grad
)
{
}
// -----------------------------------------------------------------------------------
}
}
#endif // DLIB_DNN_CPU_cPP_
dlib/dnn/cpu_dlib.h
0 → 100644
View file @
6c05ff45
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_DNN_CPU_H_
#define DLIB_DNN_CPU_H_
// This file contains CPU implementations of the GPU based functions in cuda_dlib.h
#include "tensor.h"
namespace
dlib
{
namespace
cpu
{
// -----------------------------------------------------------------------------------
void
affine_transform
(
resizable_tensor
&
dest
,
const
tensor
&
src
,
const
float
A
,
const
float
B
);
// -----------------------------------------------------------------------------------
void
affine_transform
(
resizable_tensor
&
dest
,
const
tensor
&
src
,
const
tensor
&
A
,
const
tensor
&
B
);
// -----------------------------------------------------------------------------------
void
batch_normalize
(
resizable_tensor
&
dest
,
resizable_tensor
&
means
,
resizable_tensor
&
vars
,
const
tensor
&
src
,
const
tensor
&
gamma
,
const
tensor
&
beta
);
void
batch_normalize_gradient
(
const
tensor
&
gradient_input
,
const
tensor
&
means
,
const
tensor
&
vars
,
const
tensor
&
src
,
const
tensor
&
gamma
,
tensor
&
src_grad
,
tensor
&
gamma_grad
,
tensor
&
beta_grad
);
void
batch_normalize_conv
(
resizable_tensor
&
dest
,
resizable_tensor
&
means
,
resizable_tensor
&
vars
,
const
tensor
&
src
,
const
tensor
&
gamma
,
const
tensor
&
beta
);
void
batch_normalize_conv_gradient
(
const
tensor
&
gradient_input
,
const
tensor
&
means
,
const
tensor
&
vars
,
const
tensor
&
src
,
const
tensor
&
gamma
,
tensor
&
src_grad
,
tensor
&
gamma_grad
,
tensor
&
beta_grad
);
// -----------------------------------------------------------------------------------
class
dropout
{
public
:
// not copyable
dropout
(
const
dropout
&
)
=
delete
;
dropout
&
operator
=
(
const
dropout
&
)
=
delete
;
// but is movable
dropout
(
dropout
&&
item
)
:
dropout
()
{
swap
(
item
);
}
dropout
&
operator
=
(
dropout
&&
item
)
{
swap
(
item
);
return
*
this
;
}
dropout
(
float
drop_rate
=
0
.
5
);
dropout
(
float
drop_rate
,
int
seed
);
void
swap
(
dropout
&
item
)
{
// TODO
}
void
operator
()
(
resizable_tensor
&
dest
,
resizable_tensor
&
random_mask
,
const
tensor
&
src
);
void
get_gradient
(
const
tensor
&
gradient_input
,
const
tensor
&
random_mask
,
tensor
&
grad
);
};
// -----------------------------------------------------------------------------------
}
}
#endif // DLIB_DNN_CPU_H_
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment