Commit 6d432586 authored by Davis King's avatar Davis King

Changed the reduced_decision_function_trainer2 object so that it performs a final

optimization of the weights before it finishes.  This ensures that we always
end up with the best weights for the support vectors we obtain after the
conjugate gradient optimization step.

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403069
parent 8122c10c
...@@ -552,7 +552,27 @@ namespace dlib ...@@ -552,7 +552,27 @@ namespace dlib
// out_vectors matrices // out_vectors matrices
obj.vector_to_state(opt_starting_point); obj.vector_to_state(opt_starting_point);
decision_function<kernel_type> new_df(beta,
// Do a final reoptimization of beta just to make sure it is optimal given the new
// set of support vectors.
for (long r = 0; r < K_inv.nr(); ++r)
{
for (long c = 0; c < K_inv.nc(); ++c)
{
K_inv(r,c) = kernel(out_vectors(r), out_vectors(c));
}
}
K_inv = pinv(K_inv);
for (long r = 0; r < K.nr(); ++r)
{
for (long c = 0; c < K.nc(); ++c)
{
K(r,c) = kernel(out_vectors(r), dec_funct.support_vectors(c));
}
}
decision_function<kernel_type> new_df(K_inv*K*dec_funct.alpha,
0, 0,
kernel, kernel,
out_vectors); out_vectors);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment