Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
740f5753
Commit
740f5753
authored
Oct 10, 2016
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Removing mltool since I'm pretty sure no one uses it and it might even cause
user confusion.
parent
b16d30ce
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
0 additions
and
793 deletions
+0
-793
CMakeLists.txt
dlib/test/tools/CMakeLists.txt
+0
-1
CMakeLists.txt
tools/mltool/CMakeLists.txt
+0
-34
common.h
tools/mltool/src/common.h
+0
-23
main.cpp
tools/mltool/src/main.cpp
+0
-186
option_range.cpp
tools/mltool/src/option_range.cpp
+0
-102
option_range.h
tools/mltool/src/option_range.h
+0
-45
regression.cpp
tools/mltool/src/regression.cpp
+0
-360
regression.h
tools/mltool/src/regression.h
+0
-42
No files found.
dlib/test/tools/CMakeLists.txt
View file @
740f5753
...
...
@@ -2,4 +2,3 @@ cmake_minimum_required(VERSION 2.8.4)
add_subdirectory
(
../../../tools/imglab imglab_build
)
add_subdirectory
(
../../../tools/htmlify htmlify_build
)
add_subdirectory
(
../../../tools/mltool mltool_build
)
tools/mltool/CMakeLists.txt
deleted
100644 → 0
View file @
b16d30ce
#
# This is a CMake makefile. You can find the cmake utility and
# information about it at http://www.cmake.org
#
cmake_minimum_required
(
VERSION 2.8.4
)
# create a variable called target_name and set it to the string "mltool"
set
(
target_name mltool
)
PROJECT
(
${
target_name
}
)
# add all the cpp files we want to compile to this list. This tells
# cmake that they are part of our target (which is the executable named mltool)
ADD_EXECUTABLE
(
${
target_name
}
src/main.cpp
src/regression.cpp
src/regression.h
src/common.h
src/option_range.h
src/option_range.cpp
)
# Tell cmake to link our target executable to dlib.
include
(
../../dlib/cmake
)
TARGET_LINK_LIBRARIES
(
${
target_name
}
dlib
)
INSTALL
(
TARGETS
${
target_name
}
RUNTIME DESTINATION bin
)
tools/mltool/src/common.h
deleted
100644 → 0
View file @
b16d30ce
// The contents of this file are in the public domain.
// See LICENSE_FOR_EXAMPLE_PROGRAMS.txt (in trunk/examples)
// Authors:
// Gregory Sharp
// Davis King
#ifndef DLIB_MLTOOL_COMMoN_H__
#include "dlib/cmd_line_parser.h"
#include <map>
#include "dlib/matrix.h"
using
dlib
::
command_line_parser
;
typedef
std
::
map
<
unsigned
long
,
double
>
sparse_sample_type
;
typedef
dlib
::
matrix
<
sparse_sample_type
::
value_type
::
second_type
,
0
,
1
>
dense_sample_type
;
#endif // DLIB_MLTOOL_COMMoN_H__
tools/mltool/src/main.cpp
deleted
100644 → 0
View file @
b16d30ce
// The contents of this file are in the public domain.
// See LICENSE_FOR_EXAMPLE_PROGRAMS.txt (in trunk/examples)
// Authors:
// Gregory Sharp
// Davis King
/*
This is a command line program that can try different regression
algorithms on a libsvm-formatted data set.
*/
#include "regression.h"
#include <iostream>
#include <map>
#include <vector>
#include "dlib/cmd_line_parser.h"
#include "dlib/data_io.h"
#include "dlib/svm.h"
using
namespace
dlib
;
// ----------------------------------------------------------------------------------------
static
void
parse_args
(
command_line_parser
&
parser
,
int
argc
,
char
*
argv
[])
{
try
{
// Algorithm-independent options
parser
.
add_option
(
"a"
,
"Choose the learning algorithm: {krls,krr,mlp,svr}."
,
1
);
parser
.
add_option
(
"h"
,
"Display this help message."
);
parser
.
add_option
(
"help"
,
"Display this help message."
);
parser
.
add_option
(
"k"
,
"Learning kernel (for krls,krr,svr methods): {lin,rbk}."
,
1
);
parser
.
add_option
(
"in"
,
"A libsvm-formatted file to test."
,
1
);
parser
.
add_option
(
"normalize"
,
"Normalize the sample inputs to zero-mean unit variance."
);
parser
.
add_option
(
"train-best"
,
"Train and save a network using best parameters"
,
1
);
parser
.
set_group_name
(
"Algorithm Specific Options"
);
// Algorithm-specific options
parser
.
add_option
(
"rbk-gamma"
,
"Width of radial basis kernels: {float}."
,
1
);
parser
.
add_option
(
"krls-tolerance"
,
"Numerical tolerance of krls linear dependency test: {float}."
,
1
);
parser
.
add_option
(
"mlp-hidden-units"
,
"Number of hidden units in mlp: {integer}."
,
1
);
parser
.
add_option
(
"mlp-num-iterations"
,
"Number of epochs to train the mlp: {integer}."
,
1
);
parser
.
add_option
(
"svr-c"
,
"SVR regularization parameter
\"
C
\"
: "
"{float}."
,
1
);
parser
.
add_option
(
"svr-epsilon-insensitivity"
,
"SVR fitting tolerance parameter: "
"{float}."
,
1
);
parser
.
add_option
(
"verbose"
,
"Use verbose trainers"
);
// Parse the command line arguments
parser
.
parse
(
argc
,
argv
);
// Check that options aren't given multiple times
const
char
*
one_time_opts
[]
=
{
"a"
,
"h"
,
"help"
,
"in"
};
parser
.
check_one_time_options
(
one_time_opts
);
const
char
*
valid_kernels
[]
=
{
"lin"
,
"rbk"
};
const
char
*
valid_algs
[]
=
{
"krls"
,
"krr"
,
"mlp"
,
"svr"
};
parser
.
check_option_arg_range
(
"a"
,
valid_algs
);
parser
.
check_option_arg_range
(
"k"
,
valid_kernels
);
parser
.
check_option_arg_range
(
"rbk-gamma"
,
1e-200
,
1e200
);
parser
.
check_option_arg_range
(
"krls-tolerance"
,
1e-200
,
1e200
);
parser
.
check_option_arg_range
(
"mlp-hidden-units"
,
1
,
10000000
);
parser
.
check_option_arg_range
(
"mlp-num-iterations"
,
1
,
10000000
);
parser
.
check_option_arg_range
(
"svr-c"
,
1e-200
,
1e200
);
parser
.
check_option_arg_range
(
"svr-epsilon-insensitivity"
,
1e-200
,
1e200
);
// Check if the -h option was given
if
(
parser
.
option
(
"h"
)
||
parser
.
option
(
"help"
))
{
std
::
cout
<<
"Usage: mltool [-a algorithm] --in input_file
\n
"
;
parser
.
print_options
(
std
::
cout
);
std
::
cout
<<
std
::
endl
;
exit
(
0
);
}
// Check that an input file was given
if
(
!
parser
.
option
(
"in"
))
{
std
::
cout
<<
"Error in command line:
\n
"
<<
"You must specify an input file with the --in option.
\n
"
<<
"
\n
Try the -h option for more information
\n
"
;
exit
(
0
);
}
}
catch
(
std
::
exception
&
e
)
{
// Catch cmd_line_parse_error exceptions and print usage message.
std
::
cout
<<
e
.
what
()
<<
std
::
endl
;
exit
(
1
);
}
catch
(...)
{
std
::
cout
<<
"Some error occurred"
<<
std
::
endl
;
}
}
// ----------------------------------------------------------------------------------------
int
main
(
int
argc
,
char
*
argv
[])
{
command_line_parser
parser
;
parse_args
(
parser
,
argc
,
argv
);
std
::
vector
<
sparse_sample_type
>
sparse_samples
;
std
::
vector
<
double
>
labels
;
load_libsvm_formatted_data
(
parser
.
option
(
"in"
).
argument
(),
sparse_samples
,
labels
);
if
(
sparse_samples
.
size
()
<
1
)
{
std
::
cout
<<
"Sorry, I couldn't find any samples in your data set.
\n
"
<<
"Aborting the operation.
\n
"
;
exit
(
0
);
}
std
::
vector
<
dense_sample_type
>
dense_samples
;
dense_samples
=
sparse_to_dense
(
sparse_samples
);
/* GCS FIX: The sparse_to_dense converter adds an extra column,
because libsvm files are indexed starting with "1". */
std
::
cout
<<
"Loaded "
<<
sparse_samples
.
size
()
<<
" samples"
<<
std
::
endl
<<
"Each sample has size "
<<
sparse_samples
[
0
].
size
()
<<
std
::
endl
<<
"Each dense sample has size "
<<
dense_samples
[
0
].
size
()
<<
std
::
endl
;
// Normalize inputs to N(0,1)
if
(
parser
.
option
(
"normalize"
))
{
vector_normalizer
<
dense_sample_type
>
normalizer
;
normalizer
.
train
(
dense_samples
);
for
(
unsigned
long
i
=
0
;
i
<
dense_samples
.
size
();
++
i
)
{
dense_samples
[
i
]
=
normalizer
(
dense_samples
[
i
]);
}
}
// Randomize the order of the samples, labels
randomize_samples
(
dense_samples
,
labels
);
const
command_line_parser
::
option_type
&
option_alg
=
parser
.
option
(
"a"
);
if
(
!
option_alg
)
{
// Do KRR if user didn't specify an algorithm
std
::
cout
<<
"No algorithm specified, default to KRR
\n
"
;
krr_test
(
parser
,
dense_samples
,
labels
);
}
else
if
(
option_alg
.
argument
()
==
"krls"
)
{
krls_test
(
parser
,
dense_samples
,
labels
);
}
else
if
(
option_alg
.
argument
()
==
"krr"
)
{
krr_test
(
parser
,
dense_samples
,
labels
);
}
else
if
(
option_alg
.
argument
()
==
"mlp"
)
{
mlp_test
(
parser
,
dense_samples
,
labels
);
}
else
if
(
option_alg
.
argument
()
==
"svr"
)
{
svr_test
(
parser
,
dense_samples
,
labels
);
}
else
{
fprintf
(
stderr
,
"Error, algorithm
\"
%s
\"
is unknown.
\n
"
"Please use -h to see the command line options
\n
"
,
option_alg
.
argument
().
c_str
());
exit
(
-
1
);
}
}
// ----------------------------------------------------------------------------------------
tools/mltool/src/option_range.cpp
deleted
100644 → 0
View file @
b16d30ce
// The contents of this file are in the public domain.
// See LICENSE_FOR_EXAMPLE_PROGRAMS.txt (in trunk/examples)
// Authors:
// Gregory Sharp
// Davis King
#include "option_range.h"
#include <iostream>
// ----------------------------------------------------------------------------------------
/* exp10() is not in C/C++ standard */
double
exp10_
(
double
m
)
{
return
exp
(
2.3025850929940456840179914546844
*
m
);
}
// ----------------------------------------------------------------------------------------
void
option_range
::
set_option
(
command_line_parser
&
parser
,
std
::
string
const
&
option
,
float
default_val
)
{
int
rc
;
/* No option specified */
if
(
!
parser
.
option
(
option
))
{
log_range
=
0
;
min_value
=
default_val
;
max_value
=
default_val
;
incr
=
1
;
return
;
}
/* Range specified */
rc
=
sscanf
(
parser
.
option
(
option
).
argument
().
c_str
(),
"%f:%f:%f"
,
&
min_value
,
&
incr
,
&
max_value
);
if
(
rc
==
3
)
{
log_range
=
1
;
return
;
}
/* Single value specified */
if
(
rc
==
1
)
{
log_range
=
0
;
max_value
=
min_value
;
incr
=
1
;
return
;
}
else
{
std
::
cerr
<<
"Error parsing option"
<<
option
<<
"
\n
"
;
exit
(
-
1
);
}
}
// ----------------------------------------------------------------------------------------
float
option_range
::
get_min_value
()
{
if
(
log_range
)
{
return
exp10_
(
min_value
);
}
else
{
return
min_value
;
}
}
// ----------------------------------------------------------------------------------------
float
option_range
::
get_max_value
()
{
if
(
log_range
)
{
return
exp10_
(
max_value
);
}
else
{
return
max_value
;
}
}
// ----------------------------------------------------------------------------------------
float
option_range
::
get_next_value
(
float
curr_value
)
{
if
(
log_range
)
{
curr_value
=
log10
(
curr_value
);
curr_value
+=
incr
;
curr_value
=
exp10_
(
curr_value
);
}
else
{
curr_value
+=
incr
;
}
return
curr_value
;
}
// ----------------------------------------------------------------------------------------
tools/mltool/src/option_range.h
deleted
100644 → 0
View file @
b16d30ce
// The contents of this file are in the public domain.
// See LICENSE_FOR_EXAMPLE_PROGRAMS.txt (in trunk/examples)
// Authors:
// Gregory Sharp
// Davis King
#ifndef DLIB_MLTOOL_OPTION_RaNGE_H__
#define DLIB_MLTOOL_OPTION_RaNGE_H__
#include "common.h"
#include <string>
// ----------------------------------------------------------------------------------------
struct
option_range
{
/*!
WHAT THIS OBJECT REPRESENTS
This object is a tool for representing a range of possible parameter values.
The range is determined based on the contents of the command line.
!*/
public
:
bool
log_range
;
float
min_value
;
float
max_value
;
float
incr
;
public
:
option_range
()
{
log_range
=
false
;
min_value
=
0
;
max_value
=
100
;
incr
=
10
;
}
void
set_option
(
command_line_parser
&
parser
,
std
::
string
const
&
option
,
float
default_val
);
float
get_min_value
();
float
get_max_value
();
float
get_next_value
(
float
curr_val
);
};
// ----------------------------------------------------------------------------------------
#endif // DLIB_MLTOOL_OPTION_RaNGE_H__
tools/mltool/src/regression.cpp
deleted
100644 → 0
View file @
b16d30ce
// The contents of this file are in the public domain.
// See LICENSE_FOR_EXAMPLE_PROGRAMS.txt (in trunk/examples)
// Authors:
// Gregory Sharp
// Davis King
#include "regression.h"
#include "dlib/mlp.h"
#include "dlib/svm.h"
#include "option_range.h"
#include "dlib/string.h"
#include <cmath>
#include <cfloat>
using
namespace
dlib
;
using
namespace
std
;
// ----------------------------------------------------------------------------------------
static
const
char
*
get_kernel
(
command_line_parser
&
parser
)
{
const
char
*
kernel
=
"rbk"
;
if
(
parser
.
option
(
"k"
))
{
kernel
=
parser
.
option
(
"k"
).
argument
().
c_str
();
}
return
kernel
;
}
// ----------------------------------------------------------------------------------------
static
void
get_rbk_gamma
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
,
option_range
&
range
)
{
float
default_gamma
=
3.0
/
compute_mean_squared_distance
(
randomly_subsample
(
dense_samples
,
2000
));
range
.
set_option
(
parser
,
"rbk-gamma"
,
default_gamma
);
}
// ----------------------------------------------------------------------------------------
static
void
get_krls_tolerance
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
,
option_range
&
range
)
{
float
default_krls_tolerance
=
0.001
;
range
.
set_option
(
parser
,
"krls-tolerance"
,
default_krls_tolerance
);
}
// ----------------------------------------------------------------------------------------
static
double
get_mlp_hidden_units
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
)
{
int
num_hidden
=
5
;
if
(
parser
.
option
(
"mlp-hidden-units"
))
{
num_hidden
=
sa
=
parser
.
option
(
"mlp-hidden-units"
).
argument
();
}
return
num_hidden
;
}
// ----------------------------------------------------------------------------------------
static
double
get_mlp_num_iterations
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
)
{
int
num_iterations
=
5000
;
if
(
parser
.
option
(
"mlp-num-iterations"
))
{
num_iterations
=
sa
=
parser
.
option
(
"mlp-num-iterations"
).
argument
();
}
return
num_iterations
;
}
// ----------------------------------------------------------------------------------------
static
void
get_svr_c
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
,
option_range
&
range
)
{
float
default_svr_c
=
1000.
;
range
.
set_option
(
parser
,
"svr-c"
,
default_svr_c
);
}
// ----------------------------------------------------------------------------------------
static
double
get_svr_epsilon_insensitivity
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
)
{
// Epsilon-insensitive regression means we do regression but stop
// trying to fit a data point once it is "close enough" to its
// target value. This parameter is the value that controls what
// we mean by "close enough". In this case, I'm saying I'm happy
// if the resulting regression function gets within 0.001 of the
// target value.
double
epsilon_insensitivity
=
0.001
;
if
(
parser
.
option
(
"svr-epsilon-insensitivity"
))
{
epsilon_insensitivity
=
sa
=
parser
.
option
(
"svr-epsilon-insensitivity"
).
argument
();
}
return
epsilon_insensitivity
;
}
// ----------------------------------------------------------------------------------------
void
krls_test
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
,
std
::
vector
<
double
>&
labels
)
{
typedef
radial_basis_kernel
<
dense_sample_type
>
kernel_type
;
option_range
gamma_range
,
krls_tol_range
;
get_rbk_gamma
(
parser
,
dense_samples
,
gamma_range
);
get_krls_tolerance
(
parser
,
dense_samples
,
krls_tol_range
);
// Split into training set and testing set
float
training_pct
=
0.8
;
unsigned
int
training_samples
=
(
unsigned
int
)
floor
(
training_pct
*
dense_samples
.
size
());
for
(
float
krls_tol
=
krls_tol_range
.
get_min_value
();
krls_tol
<=
krls_tol_range
.
get_max_value
();
krls_tol
=
krls_tol_range
.
get_next_value
(
krls_tol
))
{
for
(
float
gamma
=
gamma_range
.
get_min_value
();
gamma
<=
gamma_range
.
get_max_value
();
gamma
=
gamma_range
.
get_next_value
(
gamma
))
{
krls
<
kernel_type
>
net
(
kernel_type
(
gamma
),
krls_tol
);
// Krls doesn't seem to come with any batch training function
for
(
unsigned
int
j
=
0
;
j
<
training_samples
;
j
++
)
{
net
.
train
(
dense_samples
[
j
],
labels
[
j
]);
}
// Test the performance (sorry, no cross-validation)
double
total_err
=
0.0
;
for
(
unsigned
int
j
=
training_samples
+
1
;
j
<
dense_samples
.
size
();
j
++
)
{
double
diff
=
net
(
dense_samples
[
j
])
-
labels
[
j
];
total_err
+=
diff
*
diff
;
}
double
testset_error
=
total_err
/
(
dense_samples
.
size
()
-
training_samples
);
printf
(
"%3.6f %3.6f %3.9f
\n
"
,
krls_tol
,
gamma
,
testset_error
);
}
}
}
// ----------------------------------------------------------------------------------------
static
void
krr_rbk_test
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
,
std
::
vector
<
double
>&
labels
)
{
typedef
radial_basis_kernel
<
dense_sample_type
>
kernel_type
;
krr_trainer
<
kernel_type
>
trainer
;
option_range
gamma_range
;
double
best_gamma
=
DBL_MAX
;
float
best_loo
=
FLT_MAX
;
get_rbk_gamma
(
parser
,
dense_samples
,
gamma_range
);
for
(
float
gamma
=
gamma_range
.
get_min_value
();
gamma
<=
gamma_range
.
get_max_value
();
gamma
=
gamma_range
.
get_next_value
(
gamma
))
{
// LOO cross validation
std
::
vector
<
double
>
loo_values
;
if
(
parser
.
option
(
"verbose"
))
{
trainer
.
set_search_lambdas
(
logspace
(
-
9
,
4
,
100
));
trainer
.
be_verbose
();
}
trainer
.
set_kernel
(
kernel_type
(
gamma
));
trainer
.
train
(
dense_samples
,
labels
,
loo_values
);
const
double
loo_error
=
mean_squared_error
(
loo_values
,
labels
);
if
(
loo_error
<
best_loo
)
{
best_loo
=
loo_error
;
best_gamma
=
gamma
;
}
printf
(
"10^%f %9.6f
\n
"
,
log10
(
gamma
),
loo_error
);
}
printf
(
"Best result: gamma=10^%f (%g), loo_error=%9.6f
\n
"
,
log10
(
best_gamma
),
best_gamma
,
best_loo
);
if
(
parser
.
option
(
"train-best"
))
{
printf
(
"Training network with best parameters
\n
"
);
trainer
.
set_kernel
(
kernel_type
(
best_gamma
));
decision_function
<
kernel_type
>
best_network
=
trainer
.
train
(
dense_samples
,
labels
);
std
::
ofstream
fout
(
parser
.
option
(
"train-best"
).
argument
().
c_str
(),
std
::
ios
::
binary
);
serialize
(
best_network
,
fout
);
fout
.
close
();
}
}
// ----------------------------------------------------------------------------------------
static
void
krr_lin_test
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
,
std
::
vector
<
double
>&
labels
)
{
typedef
linear_kernel
<
dense_sample_type
>
kernel_type
;
krr_trainer
<
kernel_type
>
trainer
;
// LOO cross validation
std
::
vector
<
double
>
loo_values
;
trainer
.
train
(
dense_samples
,
labels
,
loo_values
);
const
double
loo_error
=
mean_squared_error
(
loo_values
,
labels
);
const
double
rs
=
r_squared
(
loo_values
,
labels
);
std
::
cout
<<
"mean squared LOO error: "
<<
loo_error
<<
std
::
endl
;
std
::
cout
<<
"R-Squared LOO: "
<<
rs
<<
std
::
endl
;
}
// ----------------------------------------------------------------------------------------
void
krr_test
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
,
std
::
vector
<
double
>&
labels
)
{
const
char
*
kernel
=
get_kernel
(
parser
);
if
(
!
strcmp
(
kernel
,
"lin"
))
{
krr_lin_test
(
parser
,
dense_samples
,
labels
);
}
else
if
(
!
strcmp
(
kernel
,
"rbk"
))
{
krr_rbk_test
(
parser
,
dense_samples
,
labels
);
}
else
{
fprintf
(
stderr
,
"Unknown kernel type: %s
\n
"
,
kernel
);
exit
(
-
1
);
}
}
// ----------------------------------------------------------------------------------------
void
mlp_test
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
,
std
::
vector
<
double
>&
labels
)
{
// Create a multi-layer perceptron network.
const
int
num_input
=
dense_samples
[
0
].
size
();
int
num_hidden
=
get_mlp_hidden_units
(
parser
,
dense_samples
);
printf
(
"Creating ANN with size (%d, %d)
\n
"
,
num_input
,
num_hidden
);
mlp
::
kernel_1a_c
net
(
num_input
,
num_hidden
);
// Dlib barfs if output values are not normalized to [0,1]
double
label_min
=
*
(
std
::
min_element
(
labels
.
begin
(),
labels
.
end
()));
double
label_max
=
*
(
std
::
max_element
(
labels
.
begin
(),
labels
.
end
()));
std
::
vector
<
double
>::
iterator
it
;
for
(
it
=
labels
.
begin
();
it
!=
labels
.
end
();
it
++
)
{
(
*
it
)
=
((
*
it
)
-
label_min
)
/
(
label_max
-
label_min
);
}
// Split into training set and testing set
float
training_pct
=
0.8
;
unsigned
int
training_samples
=
(
unsigned
int
)
floor
(
training_pct
*
dense_samples
.
size
());
// Dlib doesn't seem to come with any batch training functions for mlp.
// Also, note that only backprop is supported.
int
num_iterations
=
get_mlp_num_iterations
(
parser
,
dense_samples
);
for
(
int
i
=
0
;
i
<
num_iterations
;
i
++
)
{
for
(
unsigned
int
j
=
0
;
j
<
training_samples
;
j
++
)
{
net
.
train
(
dense_samples
[
j
],
labels
[
j
]);
}
}
// Test the performance (sorry, no cross-validation) */
double
total_err
=
0.0
;
for
(
unsigned
int
j
=
training_samples
+
1
;
j
<
dense_samples
.
size
();
j
++
)
{
double
diff
=
net
(
dense_samples
[
j
])
-
labels
[
j
];
diff
=
diff
*
(
label_max
-
label_min
);
total_err
+=
diff
*
diff
;
}
std
::
cout
<<
"MSE (no cross-validation): "
<<
total_err
/
(
dense_samples
.
size
()
-
training_samples
)
<<
std
::
endl
;
}
// ----------------------------------------------------------------------------------------
void
svr_test
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
,
std
::
vector
<
double
>&
labels
)
{
typedef
radial_basis_kernel
<
dense_sample_type
>
kernel_type
;
svr_trainer
<
kernel_type
>
trainer
;
option_range
gamma_range
,
svr_c_range
;
get_rbk_gamma
(
parser
,
dense_samples
,
gamma_range
);
get_svr_c
(
parser
,
dense_samples
,
svr_c_range
);
double
epsilon_insensitivity
=
get_svr_epsilon_insensitivity
(
parser
,
dense_samples
);
trainer
.
set_epsilon_insensitivity
(
epsilon_insensitivity
);
for
(
float
svr_c
=
svr_c_range
.
get_min_value
();
svr_c
<=
svr_c_range
.
get_max_value
();
svr_c
=
svr_c_range
.
get_next_value
(
svr_c
))
{
trainer
.
set_c
(
svr_c
);
for
(
float
gamma
=
gamma_range
.
get_min_value
();
gamma
<=
gamma_range
.
get_max_value
();
gamma
=
gamma_range
.
get_next_value
(
gamma
))
{
cout
<<
"test with svr-C: "
<<
svr_c
<<
" gamma: "
<<
gamma
<<
flush
;
matrix
<
double
,
1
,
2
>
cv
;
trainer
.
set_kernel
(
kernel_type
(
gamma
));
cv
=
cross_validate_regression_trainer
(
trainer
,
dense_samples
,
labels
,
10
);
cout
<<
" 10-fold-MSE: "
<<
cv
(
0
)
<<
endl
;
cout
<<
" 10-fold-R-Squared: "
<<
cv
(
1
)
<<
endl
;
}
}
}
// ----------------------------------------------------------------------------------------
tools/mltool/src/regression.h
deleted
100644 → 0
View file @
b16d30ce
// The contents of this file are in the public domain.
// See LICENSE_FOR_EXAMPLE_PROGRAMS.txt (in trunk/examples)
// Authors:
// Gregory Sharp
// Davis King
#ifndef DLIB_MLTOOL_REGREsSION_H__
#define DLIB_MLTOOL_REGREsSION_H__
#include "common.h"
#include <vector>
void
krr_test
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
,
std
::
vector
<
double
>&
labels
);
void
krls_test
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
,
std
::
vector
<
double
>&
labels
);
void
mlp_test
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
,
std
::
vector
<
double
>&
labels
);
void
svr_test
(
command_line_parser
&
parser
,
std
::
vector
<
dense_sample_type
>&
dense_samples
,
std
::
vector
<
double
>&
labels
);
#endif // DLIB_MLTOOL_REGREsSION_H__
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment