Commit 7494f51d authored by Davis King's avatar Davis King

Added support for all the other dlib layers that make sense.

parent 99b06476
......@@ -14,7 +14,7 @@ using namespace dlib;
// ----------------------------------------------------------------------------------------
// Only these computational layers have parameters
const std::set<string> comp_tags_with_params = {"fc", "fc_no_bias", "con", "bn_con", "bn_fc", "affine", "prelu"};
const std::set<string> comp_tags_with_params = {"fc", "fc_no_bias", "con", "affine_con", "affine_fc", "affine", "prelu"};
struct layer
{
......@@ -28,6 +28,15 @@ struct layer
long skip_id = -1; // If this isn't -1 then it means this layer draws its inputs from
// the most recent layer with tag_id==skip_id rather than its immediate predecessor.
double attribute (const string& key) const
{
auto i = attributes.find(key);
if (i != attributes.end())
return i->second;
else
throw dlib::error("Layer doesn't have the requested attribute '" + key + "'.");
}
string caffe_layer_name() const
{
if (type == "input")
......@@ -71,10 +80,10 @@ string find_layer_caffe_name (
{
i--;
// if we hit the end of the network before we found what we were looking for
if (i->type == "input")
throw dlib::error("Network definition is bad, a layer wanted to skip back to a non-existing layer.");
if (i->tag_id == tag_id)
return i->caffe_layer_name();
if (i->type == "input")
throw dlib::error("Network definition is bad, a layer wanted to skip back to a non-existing layer.");
}
}
}
......@@ -99,30 +108,30 @@ void convert_dlib_xml_to_cafffe_python_code(
const string& xml_filename
)
{
auto layers = parse_dlib_xml(xml_filename);
const auto layers = parse_dlib_xml(xml_filename);
cout << "import caffe " << endl;
cout << "from caffe import layers as L, params as P" << endl;
cout << "import numpy as np" << endl;
// dlib nets don't commit to a batch size, so just use 32 as the default
cout << "batch_size = 32;" << endl;
// dlib nets don't commit to a batch size, so just use 1 as the default
cout << "batch_size = 1;" << endl;
if (layers.back().detail_name == "input_rgb_image")
{
cout << "input_nr = 150; #WARNING, the source dlib network didn't commit to a specific input size, so we put 150 here as a default." << endl;
cout << "input_nc = 150; #WARNING, the source dlib network didn't commit to a specific input size, so we put 150 here as a default." << endl;
cout << "input_nr = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default." << endl;
cout << "input_nc = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default." << endl;
cout << "input_k = 3;" << endl;
}
else if (layers.back().detail_name == "input_rgb_image_sized")
{
cout << "input_nr = " << layers.back().attributes["nr"] << ";" << endl;
cout << "input_nc = " << layers.back().attributes["nc"] << ";" << endl;
cout << "input_nr = " << layers.back().attribute("nr") << ";" << endl;
cout << "input_nc = " << layers.back().attribute("nc") << ";" << endl;
cout << "input_k = 3;" << endl;
}
else if (layers.back().detail_name == "input")
{
cout << "input_nr = 150; #WARNING, the source dlib network didn't commit to a specific input size, so we put 150 here as a default." << endl;
cout << "input_nc = 150; #WARNING, the source dlib network didn't commit to a specific input size, so we put 150 here as a default." << endl;
cout << "input_nr = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default." << endl;
cout << "input_nc = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default." << endl;
cout << "input_k = 1;" << endl;
}
else
......@@ -131,6 +140,8 @@ void convert_dlib_xml_to_cafffe_python_code(
}
cout << "def make_netspec():" << endl;
cout << " # For reference, the only \"documentation\" about caffe layer parameters seems to be this page:\n";
cout << " # https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto\n" << endl;
cout << " n = caffe.NetSpec(); " << endl;
cout << " n.data,n.label = L.MemoryData(batch_size=batch_size, channels=input_k, height=input_nr, width=input_nc, ntop=2)" << endl;
// iterate the layers starting with the input layer
......@@ -144,13 +155,13 @@ void convert_dlib_xml_to_cafffe_python_code(
if (i->detail_name == "con")
{
cout << " n." << i->caffe_layer_name() << " = L.Convolution(n." << find_input_layer_caffe_name(i);
cout << ", num_output=" << i->attributes["num_filters"];
cout << ", kernel_w=" << i->attributes["nc"];
cout << ", kernel_h=" << i->attributes["nr"];
cout << ", stride_w=" << i->attributes["stride_x"];
cout << ", stride_h=" << i->attributes["stride_y"];
cout << ", pad_w=" << i->attributes["padding_x"];
cout << ", pad_h=" << i->attributes["padding_y"];
cout << ", num_output=" << i->attribute("num_filters");
cout << ", kernel_w=" << i->attribute("nc");
cout << ", kernel_h=" << i->attribute("nr");
cout << ", stride_w=" << i->attribute("stride_x");
cout << ", stride_h=" << i->attribute("stride_y");
cout << ", pad_w=" << i->attribute("padding_x");
cout << ", pad_h=" << i->attribute("padding_y");
cout << ");\n";
}
else if (i->detail_name == "relu")
......@@ -162,51 +173,91 @@ void convert_dlib_xml_to_cafffe_python_code(
{
cout << " n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
cout << ", pool=P.Pooling.MAX";
cout << ", kernel_w=" << i->attributes["nc"];
cout << ", kernel_h=" << i->attributes["nr"];
cout << ", stride_w=" << i->attributes["stride_x"];
cout << ", stride_h=" << i->attributes["stride_y"];
cout << ", pad_w=" << i->attributes["padding_x"];
cout << ", pad_h=" << i->attributes["padding_y"];
if (i->attribute("nc")==0)
{
cout << ", global_pooling=True";
}
else
{
cout << ", kernel_w=" << i->attribute("nc");
cout << ", kernel_h=" << i->attribute("nr");
}
if (i->attribute("padding_x") != 0 || i->attribute("padding_y") != 0)
{
throw dlib::error("dlib and caffe implement pooling with non-zero padding differently, so you can't convert a "
"network with such pooling layers.");
}
cout << ", stride_w=" << i->attribute("stride_x");
cout << ", stride_h=" << i->attribute("stride_y");
cout << ", pad_w=" << i->attribute("padding_x");
cout << ", pad_h=" << i->attribute("padding_y");
cout << ");\n";
}
else if (i->detail_name == "avg_pool")
{
cout << " n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
cout << ", pool=P.Pooling.MAX";
cout << ", kernel_w=" << i->attributes["nc"];
cout << ", kernel_h=" << i->attributes["nr"];
cout << ", stride_w=" << i->attributes["stride_x"];
cout << ", stride_h=" << i->attributes["stride_y"];
cout << ", pad_w=" << i->attributes["padding_x"];
cout << ", pad_h=" << i->attributes["padding_y"];
cout << ", pool=P.Pooling.AVE";
if (i->attribute("nc")==0)
{
cout << ", global_pooling=True";
}
else
{
cout << ", kernel_w=" << i->attribute("nc");
cout << ", kernel_h=" << i->attribute("nr");
}
if (i->attribute("padding_x") != 0 || i->attribute("padding_y") != 0)
{
throw dlib::error("dlib and caffe implement pooling with non-zero padding differently, so you can't convert a "
"network with such pooling layers.");
}
cout << ", stride_w=" << i->attribute("stride_x");
cout << ", stride_h=" << i->attribute("stride_y");
cout << ", pad_w=" << i->attribute("padding_x");
cout << ", pad_h=" << i->attribute("padding_y");
cout << ");\n";
}
else if (i->detail_name == "fc")
{
cout << " n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
cout << ", num_output=" << i->attributes["num_outputs"];
cout << ", num_output=" << i->attribute("num_outputs");
cout << ", bias_term=True";
cout << ");\n";
}
else if (i->detail_name == "fc_no_bias")
{
cout << " n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
cout << ", num_output=" << i->attributes["num_outputs"];
cout << ", num_output=" << i->attribute("num_outputs");
cout << ", bias_term=False";
cout << ");\n";
}
else if (i->detail_name == "bn_con")
else if (i->detail_name == "bn_con" || i->detail_name == "bn_fc")
{
// TODO
throw dlib::error("Conversion from dlib's batch norm layers to caffe's isn't supported. Instead, "
"you should put your network into 'test mode' by switching batch norm layers to affine layers.");
}
else if (i->detail_name == "bn_fc")
else if (i->detail_name == "affine_con")
{
// TODO
cout << " n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
cout << ", axis=1";
cout << ", bias_term=True";
cout << ");\n";
}
else if (i->detail_name == "affine_fc")
{
cout << " n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
cout << ", axis=3";
cout << ", bias_term=True";
cout << ");\n";
}
else if (i->detail_name == "add_prev")
{
// TODO
cout << " n." << i->caffe_layer_name() << " = L.Eltwise(n." << find_input_layer_caffe_name(i);
cout << ", n." << find_layer_caffe_name(i, i->attribute("tag"));
cout << ", operation=P.Eltwise.SUM";
cout << ");\n";
}
else
{
......@@ -215,6 +266,11 @@ void convert_dlib_xml_to_cafffe_python_code(
}
cout << " return n.to_proto();\n\n" << endl;
// -------------------------
// -------------------------
cout << "def save_as_caffe_model(def_file, weights_file):\n";
cout << " with open(def_file, 'w') as f: f.write(str(make_netspec()));\n";
cout << " net = caffe.Net(def_file, caffe.TEST);\n";
......@@ -222,6 +278,9 @@ void convert_dlib_xml_to_cafffe_python_code(
cout << " net.save(weights_file);\n\n";
// -------------------------
// -------------------------
cout << "def set_network_weights(net):\n";
cout << " # populate network parameters\n";
......@@ -235,7 +294,7 @@ void convert_dlib_xml_to_cafffe_python_code(
if (i->detail_name == "con")
{
const long num_filters = i->attributes["num_filters"];
const long num_filters = i->attribute("num_filters");
matrix<double> weights = trans(rowm(i->params,range(0,i->params.size()-num_filters-1)));
matrix<double> biases = trans(rowm(i->params,range(i->params.size()-num_filters, i->params.size()-1)));
......@@ -273,13 +332,21 @@ void convert_dlib_xml_to_cafffe_python_code(
cout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
cout << " net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
}
else if (i->detail_name == "bn_con")
else if (i->detail_name == "affine_con" || i->detail_name == "affine_fc")
{
// TODO
}
else if (i->detail_name == "bn_fc")
{
// TODO
const long dims = i->params.size()/2;
matrix<double> gamma = trans(rowm(i->params,range(0,dims-1)));
matrix<double> beta = trans(rowm(i->params,range(dims, 2*dims-1)));
// set gamma weights
cout << " p = "; print_as_np_array(cout,gamma); cout << ";\n";
cout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
cout << " net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
// set beta weights
cout << " p = "; print_as_np_array(cout,beta); cout << ";\n";
cout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
cout << " net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
}
}
......@@ -289,6 +356,7 @@ void convert_dlib_xml_to_cafffe_python_code(
int main(int argc, char** argv) try
{
cout.precision(9);
// TODO, write out to multiple files or just process one file at a time.
for (int i = 1; i < argc; ++i)
convert_dlib_xml_to_cafffe_python_code(argv[i]);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment