Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
74ece35a
Commit
74ece35a
authored
May 12, 2013
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added structural_sequence_segmentation_trainer, test_sequence_segmenter(),
and cross_validate_sequence_segmenter()
parent
f02d09da
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
651 additions
and
0 deletions
+651
-0
svm.h
dlib/svm.h
+2
-0
cross_validate_sequence_segmenter.h
dlib/svm/cross_validate_sequence_segmenter.h
+187
-0
cross_validate_sequence_segmenter_abstract.h
dlib/svm/cross_validate_sequence_segmenter_abstract.h
+80
-0
structural_sequence_segmentation_trainer.h
dlib/svm/structural_sequence_segmentation_trainer.h
+178
-0
structural_sequence_segmentation_trainer_abstract.h
dlib/svm/structural_sequence_segmentation_trainer_abstract.h
+204
-0
No files found.
dlib/svm.h
View file @
74ece35a
...
...
@@ -38,6 +38,7 @@
#include "svm/cross_validate_regression_trainer.h"
#include "svm/cross_validate_object_detection_trainer.h"
#include "svm/cross_validate_sequence_labeler.h"
#include "svm/cross_validate_sequence_segmenter.h"
#include "svm/cross_validate_assignment_trainer.h"
#include "svm/one_vs_all_decision_function.h"
...
...
@@ -50,6 +51,7 @@
#include "svm/active_learning.h"
#include "svm/svr_linear_trainer.h"
#include "svm/sequence_segmenter.h"
#include "svm/structural_sequence_segmentation_trainer.h"
#endif // DLIB_SVm_HEADER
...
...
dlib/svm/cross_validate_sequence_segmenter.h
0 → 100644
View file @
74ece35a
// Copyright (C) 2013 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_CROSS_VALIDATE_SEQUENCE_sEGMENTER_H__
#define DLIB_CROSS_VALIDATE_SEQUENCE_sEGMENTER_H__
#include "cross_validate_sequence_segmenter_abstract.h"
#include "sequence_segmenter.h"
namespace
dlib
{
// ----------------------------------------------------------------------------------------
namespace
impl
{
template
<
typename
sequence_segmenter_type
,
typename
sequence_type
>
const
matrix
<
double
,
1
,
3
>
raw_metrics_test_sequence_segmenter
(
const
sequence_segmenter_type
&
segmenter
,
const
std
::
vector
<
sequence_type
>&
samples
,
const
std
::
vector
<
std
::
vector
<
std
::
pair
<
unsigned
long
,
unsigned
long
>
>
>&
segments
)
{
std
::
vector
<
std
::
pair
<
unsigned
long
,
unsigned
long
>
>
truth
;
std
::
vector
<
std
::
pair
<
unsigned
long
,
unsigned
long
>
>
pred
;
double
true_hits
=
0
;
double
total_detections
=
0
;
double
total_true_segments
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
samples
.
size
();
++
i
)
{
segmenter
.
segment_sequence
(
samples
[
i
],
pred
);
truth
=
segments
[
i
];
// sort the segments so they will be in the same orders
std
::
sort
(
truth
.
begin
(),
truth
.
end
());
std
::
sort
(
pred
.
begin
(),
pred
.
end
());
total_true_segments
+=
truth
.
size
();
total_detections
+=
pred
.
size
();
unsigned
long
j
=
0
,
k
=
0
;
while
(
j
<
pred
.
size
()
&&
k
<
truth
.
size
())
{
if
(
pred
[
j
].
first
==
truth
[
k
].
first
&&
pred
[
j
].
second
==
truth
[
k
].
second
)
{
++
true_hits
;
++
j
;
++
k
;
}
else
if
(
pred
[
j
].
first
<
truth
[
k
].
first
)
{
++
j
;
}
else
{
++
k
;
}
}
}
matrix
<
double
,
1
,
3
>
res
;
res
=
total_detections
,
total_true_segments
,
true_hits
;
return
res
;
}
}
// ----------------------------------------------------------------------------------------
template
<
typename
sequence_segmenter_type
,
typename
sequence_type
>
const
matrix
<
double
,
1
,
3
>
test_sequence_segmenter
(
const
sequence_segmenter_type
&
segmenter
,
const
std
::
vector
<
sequence_type
>&
samples
,
const
std
::
vector
<
std
::
vector
<
std
::
pair
<
unsigned
long
,
unsigned
long
>
>
>&
segments
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
is_sequence_segmentation_problem
(
samples
,
segments
)
==
true
,
"
\t
matrix test_sequence_segmenter()"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
is_sequence_segmentation_problem(samples, segments): "
<<
is_sequence_segmentation_problem
(
samples
,
segments
));
const
matrix
<
double
,
1
,
3
>
metrics
=
impl
::
raw_metrics_test_sequence_segmenter
(
segmenter
,
samples
,
segments
);
const
double
total_detections
=
metrics
(
0
);
const
double
total_true_segments
=
metrics
(
1
);
const
double
true_hits
=
metrics
(
2
);
const
double
precision
=
(
total_detections
==
0
)
?
1
:
true_hits
/
total_detections
;
const
double
recall
=
(
total_true_segments
==
0
)
?
1
:
true_hits
/
total_true_segments
;
const
double
f1
=
(
precision
+
recall
==
0
)
?
0
:
2
*
precision
*
recall
/
(
precision
+
recall
);
matrix
<
double
,
1
,
3
>
res
;
res
=
precision
,
recall
,
f1
;
return
res
;
}
// ----------------------------------------------------------------------------------------
template
<
typename
trainer_type
,
typename
sequence_type
>
const
matrix
<
double
,
1
,
3
>
cross_validate_sequence_segmenter
(
const
trainer_type
&
trainer
,
const
std
::
vector
<
sequence_type
>&
samples
,
const
std
::
vector
<
std
::
vector
<
std
::
pair
<
unsigned
long
,
unsigned
long
>
>
>&
segments
,
const
long
folds
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
is_sequence_segmentation_problem
(
samples
,
segments
)
==
true
&&
1
<
folds
&&
folds
<=
static_cast
<
long
>
(
samples
.
size
()),
"
\t
matrix cross_validate_sequence_segmenter()"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
folds: "
<<
folds
<<
"
\n\t
is_sequence_segmentation_problem(samples, segments): "
<<
is_sequence_segmentation_problem
(
samples
,
segments
));
const
long
num_in_test
=
samples
.
size
()
/
folds
;
const
long
num_in_train
=
samples
.
size
()
-
num_in_test
;
std
::
vector
<
sequence_type
>
x_test
,
x_train
;
std
::
vector
<
std
::
vector
<
std
::
pair
<
unsigned
long
,
unsigned
long
>
>
>
y_test
,
y_train
;
long
next_test_idx
=
0
;
matrix
<
double
,
1
,
3
>
metrics
;
metrics
=
0
;
for
(
long
i
=
0
;
i
<
folds
;
++
i
)
{
x_test
.
clear
();
y_test
.
clear
();
x_train
.
clear
();
y_train
.
clear
();
// load up the test samples
for
(
long
cnt
=
0
;
cnt
<
num_in_test
;
++
cnt
)
{
x_test
.
push_back
(
samples
[
next_test_idx
]);
y_test
.
push_back
(
segments
[
next_test_idx
]);
next_test_idx
=
(
next_test_idx
+
1
)
%
samples
.
size
();
}
// load up the training samples
long
next
=
next_test_idx
;
for
(
long
cnt
=
0
;
cnt
<
num_in_train
;
++
cnt
)
{
x_train
.
push_back
(
samples
[
next
]);
y_train
.
push_back
(
segments
[
next
]);
next
=
(
next
+
1
)
%
samples
.
size
();
}
metrics
+=
impl
::
raw_metrics_test_sequence_segmenter
(
trainer
.
train
(
x_train
,
y_train
),
x_test
,
y_test
);
}
// for (long i = 0; i < folds; ++i)
const
double
total_detections
=
metrics
(
0
);
const
double
total_true_segments
=
metrics
(
1
);
const
double
true_hits
=
metrics
(
2
);
const
double
precision
=
(
total_detections
==
0
)
?
1
:
true_hits
/
total_detections
;
const
double
recall
=
(
total_true_segments
==
0
)
?
1
:
true_hits
/
total_true_segments
;
const
double
f1
=
(
precision
+
recall
==
0
)
?
0
:
2
*
precision
*
recall
/
(
precision
+
recall
);
matrix
<
double
,
1
,
3
>
res
;
res
=
precision
,
recall
,
f1
;
return
res
;
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_CROSS_VALIDATE_SEQUENCE_sEGMENTER_H__
dlib/svm/cross_validate_sequence_segmenter_abstract.h
0 → 100644
View file @
74ece35a
// Copyright (C) 2013 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_CROSS_VALIDATE_SEQUENCE_sEGMENTER_ABSTRACT_H__
#ifdef DLIB_CROSS_VALIDATE_SEQUENCE_sEGMENTER_ABSTRACT_H__
#include "sequence_segmenter_abstract.h"
#include "../matrix.h"
namespace
dlib
{
// ----------------------------------------------------------------------------------------
template
<
typename
sequence_segmenter_type
,
typename
sequence_type
>
const
matrix
<
double
,
1
,
3
>
test_sequence_segmenter
(
const
sequence_segmenter_type
&
segmenter
,
const
std
::
vector
<
sequence_type
>&
samples
,
const
std
::
vector
<
std
::
vector
<
std
::
pair
<
unsigned
long
,
unsigned
long
>
>
>&
segments
);
/*!
requires
- is_sequence_segmentation_problem(samples, segments) == true
- sequence_segmenter_type == dlib::sequence_segmenter or an object with a
compatible interface.
ensures
- Tests segmenter against the given samples and truth segments and returns the
precision, recall, and F1-score obtained by the segmenter. That is, the goal
of the segmenter should be to predict segments[i] given samples[i] as input.
The test_sequence_segmenter() routine therefore measures how well the
segmenter is able to perform this task.
- Returns a row matrix M with the following properties:
- M(0) == The precision of the segmenter measured against the task of
detecting the segments of each sample. This is a number in the range 0
to 1 and represents the fraction of segments output by the segmenter
which correspond to true segments for each sample.
- M(1) == The recall of the segmenter measured against the task of
detecting the segments of each sample. This is a number in the range 0
to 1 and represents the fraction of the true segments found by the
segmenter.
- M(2) == The F1-score for the segmenter. This is the harmonic mean of
M(0) and M(1).
!*/
// ----------------------------------------------------------------------------------------
template
<
typename
trainer_type
,
typename
sequence_type
>
const
matrix
<
double
,
1
,
3
>
cross_validate_sequence_segmenter
(
const
trainer_type
&
trainer
,
const
std
::
vector
<
sequence_type
>&
samples
,
const
std
::
vector
<
std
::
vector
<
std
::
pair
<
unsigned
long
,
unsigned
long
>
>
>&
segments
,
const
long
folds
);
/*!
requires
- is_sequence_segmentation_problem(samples, segments) == true
- 1 < folds <= samples.size()
- trainer_type == dlib::structural_sequence_segmentation_trainer or an object
with a compatible interface.
ensures
- Performs k-fold cross validation by using the given trainer to solve the
given sequence segmentation problem for the given number of folds. Each fold
is tested using the output of the trainer and the results from all folds are
summarized and returned.
- This function returns the precision, recall, and F1-score for the trainer.
In particular, the output is the same as the output from the
test_sequence_segmenter() routine defined above.
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_CROSS_VALIDATE_SEQUENCE_sEGMENTER_ABSTRACT_H__
dlib/svm/structural_sequence_segmentation_trainer.h
0 → 100644
View file @
74ece35a
// Copyright (C) 2013 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_STRUCTURAL_SEQUENCE_sEGMENTATION_TRAINER_H__
#define DLIB_STRUCTURAL_SEQUENCE_sEGMENTATION_TRAINER_H__
#include "structural_sequence_segmentation_trainer_abstract.h"
#include "structural_sequence_labeling_trainer.h"
#include "sequence_segmenter.h"
namespace
dlib
{
// ----------------------------------------------------------------------------------------
template
<
typename
feature_extractor
>
class
structural_sequence_segmentation_trainer
{
public
:
typedef
typename
feature_extractor
::
sequence_type
sample_sequence_type
;
typedef
std
::
vector
<
std
::
pair
<
unsigned
long
,
unsigned
long
>
>
segmented_sequence_type
;
typedef
sequence_segmenter
<
feature_extractor
>
trained_function_type
;
explicit
structural_sequence_segmentation_trainer
(
const
feature_extractor
&
fe_
)
:
trainer
(
impl_ss
::
feature_extractor
<
feature_extractor
>
(
fe_
))
{
}
structural_sequence_segmentation_trainer
(
)
{
}
const
feature_extractor
&
get_feature_extractor
(
)
const
{
return
trainer
.
get_feature_extractor
().
fe
;
}
void
set_num_threads
(
unsigned
long
num
)
{
trainer
.
set_num_threads
(
num
);
}
unsigned
long
get_num_threads
(
)
const
{
return
trainer
.
get_num_threads
();
}
void
set_epsilon
(
double
eps_
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
eps_
>
0
,
"
\t
void structural_sequence_segmentation_trainer::set_epsilon()"
<<
"
\n\t
eps_ must be greater than 0"
<<
"
\n\t
eps_: "
<<
eps_
<<
"
\n\t
this: "
<<
this
);
trainer
.
set_epsilon
(
eps_
);
}
double
get_epsilon
(
)
const
{
return
trainer
.
get_epsilon
();
}
void
set_max_cache_size
(
unsigned
long
max_size
)
{
trainer
.
set_max_cache_size
(
max_size
);
}
unsigned
long
get_max_cache_size
(
)
const
{
return
trainer
.
get_max_cache_size
();
}
void
be_verbose
(
)
{
trainer
.
be_verbose
();
}
void
be_quiet
(
)
{
trainer
.
be_quiet
();
}
void
set_oca
(
const
oca
&
item
)
{
trainer
.
set_oca
(
item
);
}
const
oca
get_oca
(
)
const
{
return
trainer
.
get_oca
();
}
void
set_c
(
double
C_
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
C_
>
0
,
"
\t
void structural_sequence_segmentation_trainer::set_c()"
<<
"
\n\t
C_ must be greater than 0"
<<
"
\n\t
C_: "
<<
C_
<<
"
\n\t
this: "
<<
this
);
trainer
.
set_c
(
C_
);
}
double
get_c
(
)
const
{
return
trainer
.
get_c
();
}
const
sequence_segmenter
<
feature_extractor
>
train
(
const
std
::
vector
<
sample_sequence_type
>&
x
,
const
std
::
vector
<
segmented_sequence_type
>&
y
)
const
{
// make sure requires clause is not broken
DLIB_ASSERT
(
is_sequence_segmentation_problem
(
x
,
y
)
==
true
,
"
\t
sequence_segmenter structural_sequence_segmentation_trainer::train(x,y)"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
x.size(): "
<<
x
.
size
()
<<
"
\n\t
is_sequence_segmentation_problem(x,y): "
<<
is_sequence_segmentation_problem
(
x
,
y
)
<<
"
\n\t
this: "
<<
this
);
// convert y into tagged BIO labels
std
::
vector
<
std
::
vector
<
unsigned
long
>
>
labels
(
y
.
size
());
for
(
unsigned
long
i
=
0
;
i
<
labels
.
size
();
++
i
)
{
labels
[
i
].
resize
(
x
[
i
].
size
(),
impl_ss
::
OUTSIDE
);
for
(
unsigned
long
j
=
0
;
j
<
y
[
i
].
size
();
++
j
)
{
const
unsigned
long
begin
=
y
[
i
][
j
].
first
;
const
unsigned
long
end
=
y
[
i
][
j
].
second
;
if
(
begin
!=
end
)
{
labels
[
i
][
begin
]
=
impl_ss
::
BEGIN
;
for
(
unsigned
long
k
=
begin
+
1
;
k
<
end
;
++
k
)
labels
[
i
][
k
]
=
impl_ss
::
INSIDE
;
}
}
}
sequence_labeler
<
impl_ss
::
feature_extractor
<
feature_extractor
>
>
temp
;
temp
=
trainer
.
train
(
x
,
labels
);
return
sequence_segmenter
<
feature_extractor
>
(
temp
.
get_weights
(),
trainer
.
get_feature_extractor
().
fe
);
}
private
:
structural_sequence_labeling_trainer
<
impl_ss
::
feature_extractor
<
feature_extractor
>
>
trainer
;
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_STRUCTURAL_SEQUENCE_sEGMENTATION_TRAINER_H__
dlib/svm/structural_sequence_segmentation_trainer_abstract.h
0 → 100644
View file @
74ece35a
// Copyright (C) 2013 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_STRUCTURAL_SEQUENCE_sEGMENTATION_TRAINER_ABSTRACT_H__
#ifdef DLIB_STRUCTURAL_SEQUENCE_sEGMENTATION_TRAINER_ABSTRACT_H__
#include "sequence_segmenter_abstract.h"
namespace
dlib
{
// ----------------------------------------------------------------------------------------
template
<
typename
feature_extractor
>
class
structural_sequence_segmentation_trainer
{
/*!
REQUIREMENTS ON feature_extractor
It must be an object that implements an interface compatible with
the example_feature_extractor defined in dlib/svm/sequence_segmenter_abstract.h.
WHAT THIS OBJECT REPRESENTS
This object is a tool for learning to do sequence segmentation based on a
set of training data. The training procedure produces a sequence_segmenter
object which can be used to identify the sub-segments of new data
sequences.
This object internally uses the structural_sequence_labeling_trainer to
solve the learning problem.
!*/
public
:
typedef
typename
feature_extractor
::
sequence_type
sample_sequence_type
;
typedef
std
::
vector
<
std
::
pair
<
unsigned
long
,
unsigned
long
>
>
segmented_sequence_type
;
typedef
sequence_segmenter
<
feature_extractor
>
trained_function_type
;
structural_sequence_segmentation_trainer
(
);
/*!
ensures
- #get_c() == 100
- this object isn't verbose
- #get_epsilon() == 0.1
- #get_num_threads() == 2
- #get_max_cache_size() == 40
- #get_feature_extractor() == a default initialized feature_extractor
!*/
explicit
structural_sequence_segmentation_trainer
(
const
feature_extractor
&
fe
);
/*!
ensures
- #get_c() == 100
- this object isn't verbose
- #get_epsilon() == 0.1
- #get_num_threads() == 2
- #get_max_cache_size() == 40
- #get_feature_extractor() == fe
!*/
const
feature_extractor
&
get_feature_extractor
(
)
const
;
/*!
ensures
- returns the feature extractor used by this object
!*/
void
set_num_threads
(
unsigned
long
num
);
/*!
ensures
- #get_num_threads() == num
!*/
unsigned
long
get_num_threads
(
)
const
;
/*!
ensures
- returns the number of threads used during training. You should
usually set this equal to the number of processing cores on your
machine.
!*/
void
set_epsilon
(
double
eps_
);
/*!
requires
- eps > 0
ensures
- #get_epsilon() == eps
!*/
double
get_epsilon
(
)
const
;
/*!
ensures
- returns the error epsilon that determines when training should stop.
Smaller values may result in a more accurate solution but take longer
to train. You can think of this epsilon value as saying "solve the
optimization problem until the average number of segmentation mistakes
per training sample is within epsilon of its optimal value".
!*/
void
set_max_cache_size
(
unsigned
long
max_size
);
/*!
ensures
- #get_max_cache_size() == max_size
!*/
unsigned
long
get_max_cache_size
(
)
const
;
/*!
ensures
- During training, this object basically runs the sequence_segmenter on
each training sample, over and over. To speed this up, it is possible to
cache the results of these segmenter invocations. This function returns
the number of cache elements per training sample kept in the cache. Note
that a value of 0 means caching is not used at all.
!*/
void
be_verbose
(
);
/*!
ensures
- This object will print status messages to standard out so that a user can
observe the progress of the algorithm.
!*/
void
be_quiet
(
);
/*!
ensures
- this object will not print anything to standard out
!*/
void
set_oca
(
const
oca
&
item
);
/*!
ensures
- #get_oca() == item
!*/
const
oca
get_oca
(
)
const
;
/*!
ensures
- returns a copy of the optimizer used to solve the structural SVM problem.
!*/
void
set_c
(
double
C
);
/*!
requires
- C > 0
ensures
- #get_c() = C
!*/
double
get_c
(
)
const
;
/*!
ensures
- returns the SVM regularization parameter. It is the parameter that
determines the trade-off between trying to fit the training data (i.e.
minimize the loss) or allowing more errors but hopefully improving the
generalization of the resulting sequence labeler. Larger values
encourage exact fitting while smaller values of C may encourage better
generalization.
!*/
const
sequence_segmenter
<
feature_extractor
>
train
(
const
std
::
vector
<
sample_sequence_type
>&
x
,
const
std
::
vector
<
segmented_sequence_type
>&
y
)
const
;
/*!
requires
- is_sequence_segmentation_problem(x, y) == true
ensures
- Uses the given training data to learn to do sequence segmentation. That
is, this function will try to find a sequence_segmenter capable of
predicting y[i] when given x[i] as input. Moreover, it should also be
capable of predicting the segmentation of new input sequences. Or in
other words, the learned sequence_segmenter should also generalize to new
data outside the training dataset.
!*/
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_STRUCTURAL_SEQUENCE_sEGMENTATION_TRAINER_ABSTRACT_H__
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment