Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
7f2e28c4
Commit
7f2e28c4
authored
Feb 03, 2015
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added the correlation_tracker.
parent
6adfdac9
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
477 additions
and
0 deletions
+477
-0
image_processing.h
dlib/image_processing.h
+1
-0
correlation_tracker.h
dlib/image_processing/correlation_tracker.h
+368
-0
correlation_tracker_abstract.h
dlib/image_processing/correlation_tracker_abstract.h
+108
-0
No files found.
dlib/image_processing.h
View file @
7f2e28c4
...
...
@@ -15,6 +15,7 @@
#include "image_processing/remove_unobtainable_rectangles.h"
#include "image_processing/scan_fhog_pyramid.h"
#include "image_processing/shape_predictor.h"
#include "image_processing/correlation_tracker.h"
#endif // DLIB_IMAGE_PROCESSInG_H_h_
...
...
dlib/image_processing/correlation_tracker.h
0 → 100644
View file @
7f2e28c4
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_CORRELATION_TrACKER_H_
#define DLIB_CORRELATION_TrACKER_H_
#include "correlation_tracker_abstract.h"
#include "../geometry.h"
#include "../matrix.h"
#include "../array2d.h"
#include "../image_transforms/assign_image.h"
namespace
dlib
{
// ----------------------------------------------------------------------------------------
class
correlation_tracker
{
public
:
correlation_tracker
(
)
{
// Create the cosine mask used for space filtering.
mask
=
make_cosine_mask
();
// Create the cosine mask used for the scale filtering.
scale_cos_mask
.
resize
(
get_num_scale_levels
());
const
long
max_level
=
get_num_scale_levels
()
/
2
;
for
(
unsigned
long
k
=
0
;
k
<
get_num_scale_levels
();
++
k
)
{
double
dist
=
std
::
abs
((
double
)
k
-
max_level
)
/
max_level
*
pi
/
2
;
dist
=
std
::
min
(
dist
,
pi
/
2
);
scale_cos_mask
[
k
]
=
std
::
cos
(
dist
);
}
}
template
<
typename
image_type
>
void
start_track
(
const
image_type
&
img
,
const
drectangle
&
p
)
{
DLIB_CASSERT
(
p
.
is_empty
()
==
false
,
"
\t
void correlation_tracker::start_track()"
<<
"
\n\t
You can't give an empty rectangle."
);
B
.
set_size
(
0
,
0
);
point_transform_affine
tform
=
inv
(
make_chip
(
img
,
p
,
F
));
for
(
unsigned
long
i
=
0
;
i
<
F
.
size
();
++
i
)
fft_inplace
(
F
[
i
]);
make_target_location_image
(
tform
(
center
(
p
)),
G
);
A
.
resize
(
F
.
size
());
for
(
unsigned
long
i
=
0
;
i
<
F
.
size
();
++
i
)
{
A
[
i
]
=
pointwise_multiply
(
G
,
F
[
i
]);
B
+=
squared
(
real
(
F
[
i
]))
+
squared
(
imag
(
F
[
i
]));
}
position
=
p
;
// now do the scale space stuff
make_scale_space
(
img
,
Fs
);
for
(
unsigned
long
i
=
0
;
i
<
Fs
.
size
();
++
i
)
fft_inplace
(
Fs
[
i
]);
make_scale_target_location_image
(
get_num_scale_levels
()
/
2
,
Gs
);
Bs
.
set_size
(
0
,
0
);
As
.
resize
(
Fs
.
size
());
for
(
unsigned
long
i
=
0
;
i
<
Fs
.
size
();
++
i
)
{
As
[
i
]
=
pointwise_multiply
(
Gs
,
Fs
[
i
]);
Bs
+=
squared
(
real
(
Fs
[
i
]))
+
squared
(
imag
(
Fs
[
i
]));
}
}
unsigned
long
get_filter_size
(
)
const
{
return
128
/
2
;
}
// must be power of 2
long
get_num_scale_levels
(
)
const
{
return
32
;
}
// must be power of 2
unsigned
long
get_scale_window_size
(
)
const
{
return
23
;
}
double
get_regularizer_space
(
)
const
{
return
0
.
001
;
}
inline
double
get_nu_space
(
)
const
{
return
0
.
025
;}
double
get_regularizer_scale
(
)
const
{
return
0
.
001
;
}
double
get_nu_scale
(
)
const
{
return
0
.
025
;}
drectangle
get_position
(
)
const
{
return
position
;
}
double
get_scale_pyramid_alpha
(
)
const
{
return
1
.
020
;
}
template
<
typename
image_type
>
double
update
(
const
image_type
&
img
,
const
drectangle
&
guess
)
{
DLIB_CASSERT
(
get_position
().
is_empty
()
==
false
,
"
\t
double correlation_tracker::update()"
<<
"
\n\t
You must call start_track() first before calling update()."
);
const
point_transform_affine
tform
=
make_chip
(
img
,
guess
,
F
);
for
(
unsigned
long
i
=
0
;
i
<
F
.
size
();
++
i
)
fft_inplace
(
F
[
i
]);
// use the current filter to predict the object's location
G
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
F
.
size
();
++
i
)
G
+=
pointwise_multiply
(
F
[
i
],
conj
(
A
[
i
]));
G
=
pointwise_multiply
(
G
,
reciprocal
(
B
+
get_regularizer_space
()));
ifft_inplace
(
G
);
const
dlib
::
vector
<
double
,
2
>
pp
=
max_point_interpolated
(
real
(
G
));
// Compute the peak to side lobe ratio.
const
point
p
=
pp
;
running_stats
<
double
>
rs
;
const
rectangle
peak
=
centered_rect
(
p
,
8
,
8
);
for
(
long
r
=
0
;
r
<
G
.
nr
();
++
r
)
{
for
(
long
c
=
0
;
c
<
G
.
nc
();
++
c
)
{
if
(
!
peak
.
contains
(
point
(
c
,
r
)))
rs
.
add
(
G
(
r
,
c
).
real
());
}
}
const
double
psr
=
(
G
(
p
.
y
(),
p
.
x
()).
real
()
-
rs
.
mean
())
/
rs
.
stddev
();
// update the position of the object
position
=
translate_rect
(
guess
,
tform
(
pp
)
-
center
(
guess
));
// now update the position filters
make_target_location_image
(
pp
,
G
);
B
*=
(
1
-
get_nu_space
());
for
(
unsigned
long
i
=
0
;
i
<
F
.
size
();
++
i
)
{
A
[
i
]
=
get_nu_space
()
*
pointwise_multiply
(
G
,
F
[
i
])
+
(
1
-
get_nu_space
())
*
A
[
i
];
B
+=
get_nu_space
()
*
(
squared
(
real
(
F
[
i
]))
+
squared
(
imag
(
F
[
i
])));
}
// Now predict the scale change
make_scale_space
(
img
,
Fs
);
for
(
unsigned
long
i
=
0
;
i
<
Fs
.
size
();
++
i
)
fft_inplace
(
Fs
[
i
]);
Gs
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
Fs
.
size
();
++
i
)
Gs
+=
pointwise_multiply
(
Fs
[
i
],
conj
(
As
[
i
]));
Gs
=
pointwise_multiply
(
Gs
,
reciprocal
(
Bs
+
get_regularizer_scale
()));
ifft_inplace
(
Gs
);
const
double
pos
=
max_point_interpolated
(
real
(
Gs
)).
y
();
// update the rectangle's scale
position
*=
std
::
pow
(
get_scale_pyramid_alpha
(),
pos
-
get_num_scale_levels
()
/
2
);
// Now update the scale filters
make_scale_target_location_image
(
pos
,
Gs
);
Bs
*=
(
1
-
get_nu_scale
());
for
(
unsigned
long
i
=
0
;
i
<
Fs
.
size
();
++
i
)
{
As
[
i
]
=
get_nu_scale
()
*
pointwise_multiply
(
Gs
,
Fs
[
i
])
+
(
1
-
get_nu_scale
())
*
As
[
i
];
Bs
+=
get_nu_scale
()
*
(
squared
(
real
(
Fs
[
i
]))
+
squared
(
imag
(
Fs
[
i
])));
}
return
psr
;
}
template
<
typename
image_type
>
double
update
(
const
image_type
&
img
)
{
return
update
(
img
,
get_position
());
}
private
:
template
<
typename
image_type
>
void
make_scale_space
(
const
image_type
&
img
,
std
::
vector
<
matrix
<
std
::
complex
<
double
>
,
0
,
1
>
>&
Fs
)
const
{
typedef
typename
image_traits
<
image_type
>::
pixel_type
pixel_type
;
// Make an image pyramid and put it into the chips array.
const
long
chip_size
=
get_scale_window_size
();
drectangle
ppp
=
position
*
std
::
pow
(
get_scale_pyramid_alpha
(),
-
get_num_scale_levels
()
/
2
);
dlib
::
array
<
array2d
<
pixel_type
>
>
chips
;
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>
from_points
,
to_points
;
from_points
.
push_back
(
point
(
0
,
0
));
from_points
.
push_back
(
point
(
chip_size
-
1
,
0
));
from_points
.
push_back
(
point
(
chip_size
-
1
,
chip_size
-
1
));
for
(
long
i
=
0
;
i
<
get_num_scale_levels
();
++
i
)
{
array2d
<
pixel_type
>
chip
(
chip_size
,
chip_size
);
// pull box into chip
to_points
.
clear
();
to_points
.
push_back
(
ppp
.
tl_corner
());
to_points
.
push_back
(
ppp
.
tr_corner
());
to_points
.
push_back
(
ppp
.
br_corner
());
transform_image
(
img
,
chip
,
interpolate_bilinear
(),
find_affine_transform
(
from_points
,
to_points
));
chips
.
push_back
(
chip
);
ppp
*=
get_scale_pyramid_alpha
();
}
// extract HOG for each chip
dlib
::
array
<
dlib
::
array
<
array2d
<
float
>
>
>
hogs
(
chips
.
size
());
for
(
unsigned
long
i
=
0
;
i
<
chips
.
size
();
++
i
)
{
extract_fhog_features
(
chips
[
i
],
hogs
[
i
],
4
);
hogs
[
i
].
resize
(
32
);
assign_image
(
hogs
[
i
][
31
],
chips
[
i
]);
assign_image
(
hogs
[
i
][
31
],
mat
(
hogs
[
i
][
31
])
/
255
.
0
);
}
// Now copy the hog features into the Fs outputs and also apply the cosine
// windowing.
Fs
.
resize
(
hogs
[
0
].
size
()
*
hogs
[
0
][
0
].
size
());
unsigned
long
i
=
0
;
for
(
long
r
=
0
;
r
<
hogs
[
0
][
0
].
nr
();
++
r
)
{
for
(
long
c
=
0
;
c
<
hogs
[
0
][
0
].
nc
();
++
c
)
{
for
(
long
j
=
0
;
j
<
hogs
[
0
].
size
();
++
j
)
{
Fs
[
i
].
set_size
(
hogs
.
size
());
for
(
unsigned
long
k
=
0
;
k
<
hogs
.
size
();
++
k
)
{
Fs
[
i
](
k
)
=
hogs
[
k
][
j
][
r
][
c
]
*
scale_cos_mask
[
k
];
}
++
i
;
}
}
}
}
template
<
typename
image_type
>
point_transform_affine
make_chip
(
const
image_type
&
img
,
drectangle
p
,
std
::
vector
<
matrix
<
std
::
complex
<
double
>
>
>&
chip
)
const
{
typedef
typename
image_traits
<
image_type
>::
pixel_type
pixel_type
;
array2d
<
pixel_type
>
temp
;
const
double
padding
=
1
.
4
;
const
chip_details
details
(
p
*
padding
,
chip_dims
(
get_filter_size
(),
get_filter_size
()));
extract_image_chip
(
img
,
details
,
temp
);
chip
.
resize
(
32
);
dlib
::
array
<
array2d
<
float
>
>
hog
;
extract_fhog_features
(
temp
,
hog
,
1
,
3
,
3
);
for
(
unsigned
long
i
=
0
;
i
<
hog
.
size
();
++
i
)
assign_image
(
chip
[
i
],
pointwise_multiply
(
matrix_cast
<
double
>
(
mat
(
hog
[
i
])),
mask
));
assign_image
(
chip
[
31
],
temp
);
assign_image
(
chip
[
31
],
pointwise_multiply
(
mat
(
chip
[
31
]),
mask
)
/
255
.
0
);
return
inv
(
get_mapping_to_chip
(
details
));
}
void
make_target_location_image
(
const
dlib
::
vector
<
double
,
2
>&
p
,
matrix
<
std
::
complex
<
double
>
>&
g
)
const
{
g
.
set_size
(
get_filter_size
(),
get_filter_size
());
g
=
0
;
rectangle
area
=
centered_rect
(
p
,
21
,
21
).
intersect
(
get_rect
(
g
));
for
(
long
r
=
area
.
top
();
r
<=
area
.
bottom
();
++
r
)
{
for
(
long
c
=
area
.
left
();
c
<=
area
.
right
();
++
c
)
{
double
dist
=
length
(
point
(
c
,
r
)
-
p
);
g
(
r
,
c
)
=
std
::
exp
(
-
dist
/
3
.
0
);
}
}
fft_inplace
(
g
);
g
=
conj
(
g
);
}
void
make_scale_target_location_image
(
const
double
scale
,
matrix
<
std
::
complex
<
double
>
,
0
,
1
>&
g
)
const
{
g
.
set_size
(
get_num_scale_levels
());
for
(
long
i
=
0
;
i
<
g
.
size
();
++
i
)
{
double
dist
=
std
::
pow
((
i
-
scale
),
2
.
0
);
g
(
i
)
=
std
::
exp
(
-
dist
/
1
.
000
);
}
fft_inplace
(
g
);
g
=
conj
(
g
);
}
matrix
<
double
>
make_cosine_mask
(
)
const
{
const
long
size
=
get_filter_size
();
matrix
<
double
>
temp
(
size
,
size
);
point
cent
=
center
(
get_rect
(
temp
));
for
(
long
r
=
0
;
r
<
temp
.
nr
();
++
r
)
{
for
(
long
c
=
0
;
c
<
temp
.
nc
();
++
c
)
{
point
delta
=
point
(
c
,
r
)
-
cent
;
double
dist
=
length
(
delta
)
/
(
size
/
2
.
0
)
*
(
pi
/
2
);
dist
=
std
::
min
(
dist
*
1
.
0
,
pi
/
2
);
temp
(
r
,
c
)
=
std
::
cos
(
dist
);
}
}
return
temp
;
}
std
::
vector
<
matrix
<
std
::
complex
<
double
>
>
>
A
,
F
;
matrix
<
double
>
B
;
std
::
vector
<
matrix
<
std
::
complex
<
double
>
,
0
,
1
>
>
As
,
Fs
;
matrix
<
double
,
0
,
1
>
Bs
;
drectangle
position
;
matrix
<
double
>
mask
;
std
::
vector
<
double
>
scale_cos_mask
;
// G and Gs do not logically contribute to the state of this object. They are
// here just so we can void reallocating them over and over.
matrix
<
std
::
complex
<
double
>
>
G
;
matrix
<
std
::
complex
<
double
>
,
0
,
1
>
Gs
;
};
}
#endif // DLIB_CORRELATION_TrACKER_H_
dlib/image_processing/correlation_tracker_abstract.h
0 → 100644
View file @
7f2e28c4
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_CORRELATION_TrACKER_ABSTRACT_H_
#ifdef DLIB_CORRELATION_TrACKER_ABSTRACT_H_
#include "../geometry/drectangle_abstract.h"
namespace
dlib
{
// ----------------------------------------------------------------------------------------
class
correlation_tracker
{
/*!
WHAT THIS OBJECT REPRESENTS
This is a tool for tracking moving objects in a video stream. You give it
the bounding box of an object in the first frame and it attempts to track the
object in the box from frame to frame.
This tool is an implementation of the method described in the following paper:
Danelljan, Martin, et al. "Accurate scale estimation for robust visual
tracking." Proceedings of the British Machine Vision Conference BMVC. 2014.
!*/
public
:
correlation_tracker
(
);
/*!
ensures
- #get_position().is_empty() == true
!*/
template
<
typename
image_type
>
void
start_track
(
const
image_type
&
img
,
const
drectangle
&
p
);
/*!
requires
- image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
- p.is_empty() == false
ensures
- This object will start tracking the thing inside the bounding box in the
given image. That is, if you call update() with subsequent video frames
then it will try to keep track of the position of the object inside p.
- #get_position() == p
!*/
drectangle
get_position
(
)
const
;
/*!
ensures
- returns the predicted position of the object under track.
!*/
template
<
typename
image_type
>
double
update
(
const
image_type
&
img
,
const
drectangle
&
guess
);
/*!
requires
- image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
- get_position().is_empty() == false
(i.e. you must have started tracking by calling start_track())
ensures
- When searching for the object in img, we search in the area around the
provided guess.
- #get_position() == the new predicted location of the object in img. This
location will be a copy of guess that has been translated and scaled
appropriately based on the content of img so that it, hopefully, bounds
the object in img.
- Returns the peak to side-lobe ratio. This is a number that measures how
confident the tracker is that the object is inside #get_position().
Larger values indicate higher confidence.
!*/
template
<
typename
image_type
>
double
update
(
const
image_type
&
img
);
/*!
requires
- image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
- get_position().is_empty() == false
(i.e. you must have started tracking by calling start_track())
ensures
- performs: return update(img, get_position())
!*/
};
}
#endif // DLIB_CORRELATION_TrACKER_ABSTRACT_H_
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment