Commit 87ee4c95 authored by Davis King's avatar Davis King

Added the option to make the poly features rotationally invariant.

This change breaks backwards compatibility with the previous version.
parent d0f916a4
......@@ -60,8 +60,8 @@ namespace dlib
if (X.nc() > 5)
{
X(cnt, 3) = x*y;
X(cnt, 4) = x*x;
X(cnt, 3) = x*x;
X(cnt, 4) = x*y;
X(cnt, 5) = y*y;
}
if (X.nc() > 9)
......
......@@ -29,11 +29,13 @@ namespace dlib
poly_image(
long order_,
long window_size_,
bool normalization = true
bool normalization = true,
bool rotation_invariance_ = false
)
{
setup(order_, window_size_);
set_uses_normalization(normalization);
set_is_rotationally_invariant(rotation_invariance_);
}
poly_image (
......@@ -46,6 +48,7 @@ namespace dlib
)
{
normalize = true;
rotation_invariance = false;
poly_coef.clear();
order = 3;
window_size = 13;
......@@ -102,11 +105,22 @@ namespace dlib
normalize = normalization;
}
bool is_rotationally_invariant (
) const { return rotation_invariance; }
void set_is_rotationally_invariant (
bool rotation_invariance_
)
{
rotation_invariance = rotation_invariance_;
}
void copy_configuration (
const poly_image& item
)
{
normalize = item.normalize;
rotation_invariance = item.rotation_invariance;
if (order != item.order ||
window_size != item.window_size)
{
......@@ -153,6 +167,9 @@ namespace dlib
}
}
}
if (rotation_invariance)
rotate_polys(rect);
}
else
{
......@@ -163,6 +180,9 @@ namespace dlib
}
num_rows = rect.height();
num_cols = rect.width();
if (rotation_invariance)
rotate_polys(rect);
}
}
......@@ -273,6 +293,7 @@ namespace dlib
serialize(item.num_rows, out);
serialize(item.num_cols, out);
serialize(item.normalize, out);
serialize(item.rotation_invariance, out);
serialize(item.filters, out);
}
......@@ -290,11 +311,303 @@ namespace dlib
deserialize(item.num_rows, in);
deserialize(item.num_cols, in);
deserialize(item.normalize, in);
deserialize(item.rotation_invariance, in);
deserialize(item.filters, in);
}
private:
matrix<float,2,1> rotate_order_1 (
const matrix<float,2,1>& w,
double cos_theta,
double sin_theta
) const
{
const double w1 = w(0);
const double w2 = w(1);
matrix<double,2,2> M;
M = w1, w2,
w2, -w1;
matrix<double,2,1> x;
x = cos_theta,
sin_theta;
return matrix_cast<float>(M*x);
}
matrix<float,3,1> rotate_order_2 (
const matrix<float,3,1>& w,
double cos_theta,
double sin_theta
) const
{
const double w1 = w(0);
const double w2 = w(1);
const double w3 = w(2);
matrix<double,3,3> M;
M = w1, w2, w3,
w2, (2*w3-2*w1), -w2,
w3, -w2, w1;
matrix<double,3,1> x;
x = std::pow(cos_theta,2.0),
cos_theta*sin_theta,
std::pow(sin_theta,2.0);
return matrix_cast<float>(M*x);
}
matrix<float,4,1> rotate_order_3 (
const matrix<float,4,1>& w,
double cos_theta,
double sin_theta
) const
{
const double w1 = w(0);
const double w2 = w(1);
const double w3 = w(2);
const double w4 = w(3);
matrix<double,4,4> M;
M = w1, w2, w3, w4,
w2, (2*w3-3*w1), (3*w4-2*w2), -w3,
w3, (3*w4-2*w2), (3*w1-2*w3), w2,
w4, -w3, w2, -w1;
matrix<double,4,1> x;
x = std::pow(cos_theta,3.0),
std::pow(cos_theta,2.0)*sin_theta,
cos_theta*std::pow(sin_theta,2.0),
std::pow(sin_theta,3.0);
return matrix_cast<float>(M*x);
}
matrix<float,5,1> rotate_order_4 (
const matrix<float,5,1>& w,
double cos_theta,
double sin_theta
) const
{
const double w1 = w(0);
const double w2 = w(1);
const double w3 = w(2);
const double w4 = w(3);
const double w5 = w(4);
matrix<double,5,5> M;
M = w1, w2, w3, w4, w5,
w2, (2*w3-4*w1), (3*w4-3*w2), (4*w5-2*w3), -w4,
w3, (3*w4-3*w2), (6*w1-4*w3+6*w5), (3*w2-3*w4), w3,
w4, (4*w5-2*w3), (3*w2-3*w4), (2*w3-4*w1), -w2,
w5, -w4, w3, -w2, w1;
matrix<double,5,1> x;
x = std::pow(cos_theta,4.0),
std::pow(cos_theta,3.0)*sin_theta,
std::pow(cos_theta,2.0)*std::pow(sin_theta,2.0),
cos_theta*std::pow(sin_theta,3.0),
std::pow(sin_theta,4.0);
return matrix_cast<float>(M*x);
}
matrix<float,6,1> rotate_order_5 (
const matrix<float,6,1>& w,
double cos_theta,
double sin_theta
) const
{
const double w1 = w(0);
const double w2 = w(1);
const double w3 = w(2);
const double w4 = w(3);
const double w5 = w(4);
const double w6 = w(5);
matrix<double,6,6> M;
M = w1, w2, w3, w4, w5, w6,
w2, (2*w3-5*w1), (3*w4-4*w2), (4*w5-3*w3), (5*w6-2*w4), -w5,
w3, (3*w4-4*w2), (10*w1-6*w3+6*w5), (6*w2-6*w4+10*w6), (3*w3-4*w5), w4,
w4, (4*w5-3*w3), (6*w2-6*w4+10*w6), (-10*w1+6*w3-6*w5), (3*w4-4*w2), -w3,
w5, (5*w6-2*w4), (3*w3-4*w5), (3*w4-4*w2), (5*w1-2*w3), w2,
w6, -w5, w4, -w3, w2, -w1;
matrix<double,6,1> x;
x = std::pow(cos_theta,5.0),
std::pow(cos_theta,4.0)*sin_theta,
std::pow(cos_theta,3.0)*std::pow(sin_theta,2.0),
std::pow(cos_theta,2.0)*std::pow(sin_theta,3.0),
cos_theta*std::pow(sin_theta,4.0),
std::pow(sin_theta,5.0);
return matrix_cast<float>(M*x);
}
matrix<float,7,1> rotate_order_6 (
const matrix<float,7,1>& w,
double cos_theta,
double sin_theta
) const
{
const double w1 = w(0);
const double w2 = w(1);
const double w3 = w(2);
const double w4 = w(3);
const double w5 = w(4);
const double w6 = w(5);
const double w7 = w(6);
matrix<double,7,7> M;
M = w1, w2, w3, w4, w5, w6, w7,
w2, (2*w3-6*w1), (3*w4-5*w2), (4*w5-4*w3), (5*w6-3*w4), (6*w7-2*w5), -w6,
w3, (3*w4-5*w2), (15*w1-8*w3+ 6*w5), ( 10*w2 -9*w4+10*w6), ( 6*w3-8*w5+15*w7), (3*w4-5*w6), w5,
w4, (4*w5-4*w3), (10*w2-9*w4+10*w6), (-20*w1+12*w3-12*w5+20*w7), (-10*w2+9*w4-10*w6), (4*w5-4*w3), -w4,
w5, (5*w6-3*w4), ( 6*w3-8*w5+15*w7), (-10*w2 +9*w4-10*w6), ( 15*w1-8*w3 +6*w5), (5*w2-3*w4), w3,
w6, (6*w7-2*w5), (3*w4-5*w6), (4*w5-4*w3), (5*w2-3*w4), (2*w3-6*w1), -w2,
w7, -w6, w5, -w4, w3, -w2, w1;
matrix<double,7,1> x;
x = std::pow(cos_theta,6.0),
std::pow(cos_theta,5.0)*sin_theta,
std::pow(cos_theta,4.0)*std::pow(sin_theta,2.0),
std::pow(cos_theta,3.0)*std::pow(sin_theta,3.0),
std::pow(cos_theta,2.0)*std::pow(sin_theta,4.0),
cos_theta*std::pow(sin_theta,5.0),
std::pow(sin_theta,6.0);
return matrix_cast<float>(M*x);
}
void rotate_polys (
const rectangle& rect
)
/*!
ensures
- rotates all the polynomials in poly_coef so that they are
rotationally invariant
!*/
{
// The idea here is to use a rotation matrix to rotate the
// coordinate system for the polynomial so that the x axis
// always lines up with the gradient vector (or direction of
// max curvature). This way we can make the representation
// rotation invariant.
// Note that the rotation matrix is given by:
// [ cos_theta -sin_theta ]
// [ sin_theta cos_theta ]
// need to offset poly_coef to get past the constant term if there isn't any normalization.
const int off = (normalize) ? 0 : 1;
for (long r = rect.top(); r <= rect.bottom(); ++r)
{
for (long c = rect.left(); c <= rect.right(); ++c)
{
dlib::vector<double,2> g(poly_coef[off+0][r][c],
poly_coef[off+1][r][c]);
const double len = g.length();
if (len != 0)
{
g /= len;
}
else
{
g.x() = 1;
g.y() = 0;
}
// since we normalized g we can find the sin/cos of its angle easily.
const double cos_theta = g.x();
const double sin_theta = g.y();
if (order >= 1)
{
matrix<float,2,1> w;
w = poly_coef[off+0][r][c],
poly_coef[off+1][r][c];
w = rotate_order_1(w, cos_theta, sin_theta);
poly_coef[off+0][r][c] = w(0);
poly_coef[off+1][r][c] = w(1);
}
if (order >= 2)
{
matrix<float,3,1> w;
w = poly_coef[off+2][r][c],
poly_coef[off+3][r][c],
poly_coef[off+4][r][c];
w = rotate_order_2(w, cos_theta, sin_theta);
poly_coef[off+2][r][c] = w(0);
poly_coef[off+3][r][c] = w(1);
poly_coef[off+4][r][c] = w(2);
}
if (order >= 3)
{
matrix<float,4,1> w;
w = poly_coef[off+5][r][c],
poly_coef[off+6][r][c],
poly_coef[off+7][r][c],
poly_coef[off+8][r][c];
w = rotate_order_3(w, cos_theta, sin_theta);
poly_coef[off+5][r][c] = w(0);
poly_coef[off+6][r][c] = w(1);
poly_coef[off+7][r][c] = w(2);
poly_coef[off+8][r][c] = w(3);
}
if (order >= 4)
{
matrix<float,5,1> w;
w = poly_coef[off+9][r][c],
poly_coef[off+10][r][c],
poly_coef[off+11][r][c],
poly_coef[off+12][r][c],
poly_coef[off+13][r][c];
w = rotate_order_4(w, cos_theta, sin_theta);
poly_coef[off+9][r][c] = w(0);
poly_coef[off+10][r][c] = w(1);
poly_coef[off+11][r][c] = w(2);
poly_coef[off+12][r][c] = w(3);
poly_coef[off+13][r][c] = w(4);
}
if (order >= 5)
{
matrix<float,6,1> w;
w = poly_coef[off+14][r][c],
poly_coef[off+15][r][c],
poly_coef[off+16][r][c],
poly_coef[off+17][r][c],
poly_coef[off+18][r][c],
poly_coef[off+19][r][c];
w = rotate_order_5(w, cos_theta, sin_theta);
poly_coef[off+14][r][c] = w(0);
poly_coef[off+15][r][c] = w(1);
poly_coef[off+16][r][c] = w(2);
poly_coef[off+17][r][c] = w(3);
poly_coef[off+18][r][c] = w(4);
poly_coef[off+19][r][c] = w(5);
}
if (order >= 6)
{
matrix<float,7,1> w;
w = poly_coef[off+20][r][c],
poly_coef[off+21][r][c],
poly_coef[off+22][r][c],
poly_coef[off+23][r][c],
poly_coef[off+24][r][c],
poly_coef[off+25][r][c],
poly_coef[off+26][r][c];
w = rotate_order_6(w, cos_theta, sin_theta);
poly_coef[off+20][r][c] = w(0);
poly_coef[off+21][r][c] = w(1);
poly_coef[off+22][r][c] = w(2);
poly_coef[off+23][r][c] = w(3);
poly_coef[off+24][r][c] = w(4);
poly_coef[off+25][r][c] = w(5);
poly_coef[off+26][r][c] = w(6);
}
}
}
}
template <typename image_type>
rectangle filter_image (
const image_type& img,
......@@ -322,6 +635,7 @@ namespace dlib
long num_cols;
bool normalize;
bool rotation_invariance;
mutable descriptor_type des;
};
......
......@@ -54,12 +54,14 @@ namespace dlib
- #get_window_size() == 13
- #size() == 0
- #uses_normalization() == true
- #is_rotationally_invariant() == false
!*/
poly_image(
long order,
long window_size,
bool normalization = true
bool normalization = true,
bool rotation_invariance = false
);
/*!
requires
......@@ -70,6 +72,7 @@ namespace dlib
- #get_window_size() == window_size
- #size() == 0
- #uses_normalization() == normalization
- #is_rotationally_invariant() == rotation_invariance
!*/
void clear (
......@@ -124,6 +127,23 @@ namespace dlib
- #uses_normalization() == normalization
!*/
bool is_rotationally_invariant (
);
/*!
ensures
- returns true if the feature extractor will adjust the output so that it
is rotationally invariant. This is done by rotating each patch such that
the gradient vector always points in the same direction.
!*/
void set_is_rotationally_invariant (
bool rotation_invariance
);
/*!
ensures
- #is_rotationally_invariant() == rotation_invariance
!*/
void copy_configuration (
const poly_image& item
);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment