Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
8904db50
Commit
8904db50
authored
May 21, 2011
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added a bunch of unit tests for the various forms of structured svm.
parent
8c03fbd6
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
619 additions
and
0 deletions
+619
-0
CMakeLists.txt
dlib/test/CMakeLists.txt
+1
-0
makefile
dlib/test/makefile
+1
-0
svm_struct.cpp
dlib/test/svm_struct.cpp
+617
-0
No files found.
dlib/test/CMakeLists.txt
View file @
8904db50
...
...
@@ -101,6 +101,7 @@ set (tests
svm_c_linear.cpp
svm.cpp
svm_multiclass_linear.cpp
svm_struct.cpp
symmetric_matrix_cache.cpp
thread_pool.cpp
threads.cpp
...
...
dlib/test/makefile
View file @
8904db50
...
...
@@ -111,6 +111,7 @@ SRC += string.cpp
SRC
+=
svm_c_linear.cpp
SRC
+=
svm.cpp
SRC
+=
svm_multiclass_linear.cpp
SRC
+=
svm_struct.cpp
SRC
+=
symmetric_matrix_cache.cpp
SRC
+=
thread_pool.cpp
SRC
+=
threads.cpp
...
...
dlib/test/svm_struct.cpp
0 → 100644
View file @
8904db50
// Copyright (C) 2011 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <sstream>
#include <string>
#include <cstdlib>
#include <ctime>
#include <dlib/svm_threaded.h>
#include "tester.h"
namespace
{
using
namespace
test
;
using
namespace
dlib
;
using
namespace
std
;
logger
dlog
(
"test.svm_struct"
);
template
<
typename
matrix_type
,
typename
sample_type
,
typename
label_type
>
class
test_multiclass_svm_problem
:
public
structural_svm_problem_threaded
<
matrix_type
,
std
::
vector
<
std
::
pair
<
unsigned
long
,
typename
matrix_type
::
type
>
>
>
{
public
:
typedef
typename
matrix_type
::
type
scalar_type
;
typedef
std
::
vector
<
std
::
pair
<
unsigned
long
,
scalar_type
>
>
feature_vector_type
;
test_multiclass_svm_problem
(
const
std
::
vector
<
sample_type
>&
samples_
,
const
std
::
vector
<
label_type
>&
labels_
)
:
structural_svm_problem_threaded
<
matrix_type
,
std
::
vector
<
std
::
pair
<
unsigned
long
,
typename
matrix_type
::
type
>
>
>
(
2
),
samples
(
samples_
),
labels
(
labels_
),
dims
(
10
+
1
)
// +1 for the bias
{
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
distinct_labels
.
push_back
(
i
);
}
}
virtual
long
get_num_dimensions
(
)
const
{
return
dims
*
10
;
}
virtual
long
get_num_samples
(
)
const
{
return
static_cast
<
long
>
(
samples
.
size
());
}
virtual
void
get_truth_joint_feature_vector
(
long
idx
,
feature_vector_type
&
psi
)
const
{
sparse_vector
::
assign
(
psi
,
samples
[
idx
]);
// Add a constant -1 to account for the bias term.
psi
.
push_back
(
std
::
make_pair
(
dims
-
1
,
static_cast
<
scalar_type
>
(
-
1
)));
// Find which distinct label goes with this psi.
const
long
label_idx
=
index_of_max
(
vector_to_matrix
(
distinct_labels
)
==
labels
[
idx
]);
offset_feature_vector
(
psi
,
dims
*
label_idx
);
}
virtual
void
separation_oracle
(
const
long
idx
,
const
matrix_type
&
current_solution
,
scalar_type
&
loss
,
feature_vector_type
&
psi
)
const
{
scalar_type
best_val
=
-
std
::
numeric_limits
<
scalar_type
>::
infinity
();
unsigned
long
best_idx
=
0
;
// Figure out which label is the best. That is, what label maximizes
// LOSS(idx,y) + F(x,y). Note that y in this case is given by distinct_labels[i].
for
(
unsigned
long
i
=
0
;
i
<
distinct_labels
.
size
();
++
i
)
{
using
dlib
::
sparse_vector
::
dot
;
using
dlib
::
dot
;
// Compute the F(x,y) part:
// perform: temp == dot(relevant part of current solution, samples[idx]) - current_bias
scalar_type
temp
=
dot
(
rowm
(
current_solution
,
range
(
i
*
dims
,
(
i
+
1
)
*
dims
-
2
)),
samples
[
idx
])
-
current_solution
((
i
+
1
)
*
dims
-
1
);
// Add the LOSS(idx,y) part:
if
(
labels
[
idx
]
!=
distinct_labels
[
i
])
temp
+=
1
;
// Now temp == LOSS(idx,y) + F(x,y). Check if it is the biggest we have seen.
if
(
temp
>
best_val
)
{
best_val
=
temp
;
best_idx
=
i
;
}
}
sparse_vector
::
assign
(
psi
,
samples
[
idx
]);
// add a constant -1 to account for the bias term
psi
.
push_back
(
std
::
make_pair
(
dims
-
1
,
static_cast
<
scalar_type
>
(
-
1
)));
offset_feature_vector
(
psi
,
dims
*
best_idx
);
if
(
distinct_labels
[
best_idx
]
==
labels
[
idx
])
loss
=
0
;
else
loss
=
1
;
}
private
:
void
offset_feature_vector
(
feature_vector_type
&
sample
,
const
unsigned
long
val
)
const
{
if
(
val
!=
0
)
{
for
(
typename
feature_vector_type
::
iterator
i
=
sample
.
begin
();
i
!=
sample
.
end
();
++
i
)
{
i
->
first
+=
val
;
}
}
}
const
std
::
vector
<
sample_type
>&
samples
;
const
std
::
vector
<
label_type
>&
labels
;
std
::
vector
<
label_type
>
distinct_labels
;
const
long
dims
;
};
// ----------------------------------------------------------------------------------------
template
<
typename
K
,
typename
label_type_
=
typename
K
::
scalar_type
>
class
test_svm_multiclass_linear_trainer2
{
public
:
typedef
label_type_
label_type
;
typedef
K
kernel_type
;
typedef
typename
kernel_type
::
scalar_type
scalar_type
;
typedef
typename
kernel_type
::
sample_type
sample_type
;
typedef
typename
kernel_type
::
mem_manager_type
mem_manager_type
;
typedef
multiclass_linear_decision_function
<
kernel_type
,
label_type
>
trained_function_type
;
test_svm_multiclass_linear_trainer2
(
)
:
C
(
10
),
eps
(
1e-4
),
verbose
(
false
)
{
}
trained_function_type
train
(
const
std
::
vector
<
sample_type
>&
all_samples
,
const
std
::
vector
<
label_type
>&
all_labels
)
const
{
scalar_type
svm_objective
=
0
;
return
train
(
all_samples
,
all_labels
,
svm_objective
);
}
trained_function_type
train
(
const
std
::
vector
<
sample_type
>&
all_samples
,
const
std
::
vector
<
label_type
>&
all_labels
,
scalar_type
&
svm_objective
)
const
{
// make sure requires clause is not broken
DLIB_ASSERT
(
is_learning_problem
(
all_samples
,
all_labels
),
"
\t
trained_function_type test_svm_multiclass_linear_trainer2::train(all_samples,all_labels)"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
all_samples.size(): "
<<
all_samples
.
size
()
<<
"
\n\t
all_labels.size(): "
<<
all_labels
.
size
()
);
typedef
matrix
<
scalar_type
,
0
,
1
>
w_type
;
w_type
weights
;
std
::
vector
<
sample_type
>
samples1
(
all_samples
.
begin
(),
all_samples
.
begin
()
+
all_samples
.
size
()
/
2
);
std
::
vector
<
sample_type
>
samples2
(
all_samples
.
begin
()
+
all_samples
.
size
()
/
2
,
all_samples
.
end
());
std
::
vector
<
label_type
>
labels1
(
all_labels
.
begin
(),
all_labels
.
begin
()
+
all_labels
.
size
()
/
2
);
std
::
vector
<
label_type
>
labels2
(
all_labels
.
begin
()
+
all_labels
.
size
()
/
2
,
all_labels
.
end
());
test_multiclass_svm_problem
<
w_type
,
sample_type
,
label_type
>
problem1
(
samples1
,
labels1
);
test_multiclass_svm_problem
<
w_type
,
sample_type
,
label_type
>
problem2
(
samples2
,
labels2
);
problem1
.
set_max_cache_size
(
3
);
problem2
.
set_max_cache_size
(
0
);
svm_struct_processing_node
node1
(
problem1
,
12345
,
3
);
svm_struct_processing_node
node2
(
problem2
,
12346
,
0
);
solver
.
set_inactive_plane_threshold
(
50
);
solver
.
set_subproblem_epsilon
(
1e-4
);
svm_struct_controller_node
controller
;
controller
.
set_c
(
C
);
controller
.
set_epsilon
(
eps
);
if
(
verbose
)
controller
.
be_verbose
();
controller
.
add_processing_node
(
"127.0.0.1"
,
12345
);
controller
.
add_processing_node
(
"127.0.0.1"
,
12346
);
svm_objective
=
controller
(
solver
,
weights
);
trained_function_type
df
;
const
long
dims
=
sparse_vector
::
max_index_plus_one
(
all_samples
);
df
.
labels
=
select_all_distinct_labels
(
all_labels
);
df
.
weights
=
colm
(
reshape
(
weights
,
df
.
labels
.
size
(),
dims
+
1
),
range
(
0
,
dims
-
1
));
df
.
b
=
colm
(
reshape
(
weights
,
df
.
labels
.
size
(),
dims
+
1
),
dims
);
return
df
;
}
private
:
scalar_type
C
;
scalar_type
eps
;
bool
verbose
;
mutable
oca
solver
;
};
// ----------------------------------------------------------------------------------------
template
<
typename
K
,
typename
label_type_
=
typename
K
::
scalar_type
>
class
test_svm_multiclass_linear_trainer3
{
public
:
typedef
label_type_
label_type
;
typedef
K
kernel_type
;
typedef
typename
kernel_type
::
scalar_type
scalar_type
;
typedef
typename
kernel_type
::
sample_type
sample_type
;
typedef
typename
kernel_type
::
mem_manager_type
mem_manager_type
;
typedef
multiclass_linear_decision_function
<
kernel_type
,
label_type
>
trained_function_type
;
test_svm_multiclass_linear_trainer3
(
)
:
C
(
10
),
eps
(
1e-4
),
verbose
(
false
)
{
}
trained_function_type
train
(
const
std
::
vector
<
sample_type
>&
all_samples
,
const
std
::
vector
<
label_type
>&
all_labels
)
const
{
scalar_type
svm_objective
=
0
;
return
train
(
all_samples
,
all_labels
,
svm_objective
);
}
trained_function_type
train
(
const
std
::
vector
<
sample_type
>&
all_samples
,
const
std
::
vector
<
label_type
>&
all_labels
,
scalar_type
&
svm_objective
)
const
{
// make sure requires clause is not broken
DLIB_ASSERT
(
is_learning_problem
(
all_samples
,
all_labels
),
"
\t
trained_function_type test_svm_multiclass_linear_trainer3::train(all_samples,all_labels)"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
all_samples.size(): "
<<
all_samples
.
size
()
<<
"
\n\t
all_labels.size(): "
<<
all_labels
.
size
()
);
typedef
matrix
<
scalar_type
,
0
,
1
>
w_type
;
w_type
weights
;
test_multiclass_svm_problem
<
w_type
,
sample_type
,
label_type
>
problem
(
all_samples
,
all_labels
);
problem
.
set_max_cache_size
(
0
);
problem
.
set_c
(
C
);
problem
.
set_epsilon
(
eps
);
if
(
verbose
)
problem
.
be_verbose
();
solver
.
set_inactive_plane_threshold
(
50
);
solver
.
set_subproblem_epsilon
(
1e-4
);
svm_objective
=
solver
(
problem
,
weights
);
trained_function_type
df
;
const
long
dims
=
sparse_vector
::
max_index_plus_one
(
all_samples
);
df
.
labels
=
select_all_distinct_labels
(
all_labels
);
df
.
weights
=
colm
(
reshape
(
weights
,
df
.
labels
.
size
(),
dims
+
1
),
range
(
0
,
dims
-
1
));
df
.
b
=
colm
(
reshape
(
weights
,
df
.
labels
.
size
(),
dims
+
1
),
dims
);
return
df
;
}
private
:
scalar_type
C
;
scalar_type
eps
;
bool
verbose
;
mutable
oca
solver
;
};
// ----------------------------------------------------------------------------------------
template
<
typename
K
,
typename
label_type_
=
typename
K
::
scalar_type
>
class
test_svm_multiclass_linear_trainer4
{
public
:
typedef
label_type_
label_type
;
typedef
K
kernel_type
;
typedef
typename
kernel_type
::
scalar_type
scalar_type
;
typedef
typename
kernel_type
::
sample_type
sample_type
;
typedef
typename
kernel_type
::
mem_manager_type
mem_manager_type
;
typedef
multiclass_linear_decision_function
<
kernel_type
,
label_type
>
trained_function_type
;
test_svm_multiclass_linear_trainer4
(
)
:
C
(
10
),
eps
(
1e-4
),
verbose
(
false
)
{
}
trained_function_type
train
(
const
std
::
vector
<
sample_type
>&
all_samples
,
const
std
::
vector
<
label_type
>&
all_labels
)
const
{
scalar_type
svm_objective
=
0
;
return
train
(
all_samples
,
all_labels
,
svm_objective
);
}
trained_function_type
train
(
const
std
::
vector
<
sample_type
>&
all_samples
,
const
std
::
vector
<
label_type
>&
all_labels
,
scalar_type
&
svm_objective
)
const
{
// make sure requires clause is not broken
DLIB_ASSERT
(
is_learning_problem
(
all_samples
,
all_labels
),
"
\t
trained_function_type test_svm_multiclass_linear_trainer4::train(all_samples,all_labels)"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
all_samples.size(): "
<<
all_samples
.
size
()
<<
"
\n\t
all_labels.size(): "
<<
all_labels
.
size
()
);
typedef
matrix
<
scalar_type
,
0
,
1
>
w_type
;
w_type
weights
;
test_multiclass_svm_problem
<
w_type
,
sample_type
,
label_type
>
problem
(
all_samples
,
all_labels
);
problem
.
set_max_cache_size
(
3
);
problem
.
set_c
(
C
);
problem
.
set_epsilon
(
eps
);
if
(
verbose
)
problem
.
be_verbose
();
solver
.
set_inactive_plane_threshold
(
50
);
solver
.
set_subproblem_epsilon
(
1e-4
);
svm_objective
=
solver
(
problem
,
weights
);
trained_function_type
df
;
const
long
dims
=
sparse_vector
::
max_index_plus_one
(
all_samples
);
df
.
labels
=
select_all_distinct_labels
(
all_labels
);
df
.
weights
=
colm
(
reshape
(
weights
,
df
.
labels
.
size
(),
dims
+
1
),
range
(
0
,
dims
-
1
));
df
.
b
=
colm
(
reshape
(
weights
,
df
.
labels
.
size
(),
dims
+
1
),
dims
);
return
df
;
}
private
:
scalar_type
C
;
scalar_type
eps
;
bool
verbose
;
mutable
oca
solver
;
};
// ----------------------------------------------------------------------------------------
template
<
typename
K
,
typename
label_type_
=
typename
K
::
scalar_type
>
class
test_svm_multiclass_linear_trainer5
{
public
:
typedef
label_type_
label_type
;
typedef
K
kernel_type
;
typedef
typename
kernel_type
::
scalar_type
scalar_type
;
typedef
typename
kernel_type
::
sample_type
sample_type
;
typedef
typename
kernel_type
::
mem_manager_type
mem_manager_type
;
typedef
multiclass_linear_decision_function
<
kernel_type
,
label_type
>
trained_function_type
;
test_svm_multiclass_linear_trainer5
(
)
:
C
(
10
),
eps
(
1e-4
),
verbose
(
false
)
{
}
trained_function_type
train
(
const
std
::
vector
<
sample_type
>&
all_samples
,
const
std
::
vector
<
label_type
>&
all_labels
)
const
{
scalar_type
svm_objective
=
0
;
return
train
(
all_samples
,
all_labels
,
svm_objective
);
}
trained_function_type
train
(
const
std
::
vector
<
sample_type
>&
all_samples
,
const
std
::
vector
<
label_type
>&
all_labels
,
scalar_type
&
svm_objective
)
const
{
// make sure requires clause is not broken
DLIB_ASSERT
(
is_learning_problem
(
all_samples
,
all_labels
),
"
\t
trained_function_type test_svm_multiclass_linear_trainer5::train(all_samples,all_labels)"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
all_samples.size(): "
<<
all_samples
.
size
()
<<
"
\n\t
all_labels.size(): "
<<
all_labels
.
size
()
);
typedef
matrix
<
scalar_type
,
0
,
1
>
w_type
;
w_type
weights
;
multiclass_svm_problem
<
w_type
,
sample_type
,
label_type
>
problem
(
all_samples
,
all_labels
);
problem
.
set_max_cache_size
(
3
);
problem
.
set_c
(
C
);
problem
.
set_epsilon
(
eps
);
if
(
verbose
)
problem
.
be_verbose
();
solver
.
set_inactive_plane_threshold
(
50
);
solver
.
set_subproblem_epsilon
(
1e-4
);
svm_objective
=
solver
(
problem
,
weights
);
trained_function_type
df
;
const
long
dims
=
sparse_vector
::
max_index_plus_one
(
all_samples
);
df
.
labels
=
select_all_distinct_labels
(
all_labels
);
df
.
weights
=
colm
(
reshape
(
weights
,
df
.
labels
.
size
(),
dims
+
1
),
range
(
0
,
dims
-
1
));
df
.
b
=
colm
(
reshape
(
weights
,
df
.
labels
.
size
(),
dims
+
1
),
dims
);
return
df
;
}
private
:
scalar_type
C
;
scalar_type
eps
;
bool
verbose
;
mutable
oca
solver
;
};
// ----------------------------------------------------------------------------------------
typedef
matrix
<
double
,
10
,
1
>
sample_type
;
typedef
double
scalar_type
;
void
make_dataset
(
std
::
vector
<
sample_type
>&
samples
,
std
::
vector
<
scalar_type
>&
labels
)
{
samples
.
clear
();
labels
.
clear
();
dlib
::
rand
rnd
;
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
for
(
int
j
=
0
;
j
<
100
;
++
j
)
{
sample_type
samp
;
samp
=
0
;
samp
(
i
)
=
10
*
rnd
.
get_random_double
()
+
1
;
samples
.
push_back
(
samp
);
labels
.
push_back
(
i
);
}
}
}
// ----------------------------------------------------------------------------------------
class
test_svm_struct
:
public
tester
{
public
:
test_svm_struct
(
)
:
tester
(
"test_svm_struct"
,
"Runs tests on the structural svm components."
)
{}
void
perform_test
(
)
{
typedef
linear_kernel
<
sample_type
>
kernel_type
;
svm_multiclass_linear_trainer
<
kernel_type
>
trainer1
;
test_svm_multiclass_linear_trainer2
<
kernel_type
>
trainer2
;
test_svm_multiclass_linear_trainer3
<
kernel_type
>
trainer3
;
test_svm_multiclass_linear_trainer4
<
kernel_type
>
trainer4
;
test_svm_multiclass_linear_trainer5
<
kernel_type
>
trainer5
;
trainer1
.
set_epsilon
(
1e-4
);
trainer1
.
set_c
(
10
);
std
::
vector
<
sample_type
>
samples
;
std
::
vector
<
scalar_type
>
labels
;
make_dataset
(
samples
,
labels
);
multiclass_linear_decision_function
<
kernel_type
,
double
>
df1
,
df2
,
df3
,
df4
,
df5
;
double
obj1
,
obj2
,
obj3
,
obj4
,
obj5
;
// Solve a multiclass SVM a whole bunch of different ways and make sure
// they all give the same answer.
print_spinner
();
df1
=
trainer1
.
train
(
samples
,
labels
,
obj1
);
print_spinner
();
df2
=
trainer2
.
train
(
samples
,
labels
,
obj2
);
print_spinner
();
df3
=
trainer3
.
train
(
samples
,
labels
,
obj3
);
print_spinner
();
df4
=
trainer4
.
train
(
samples
,
labels
,
obj4
);
print_spinner
();
df5
=
trainer5
.
train
(
samples
,
labels
,
obj5
);
print_spinner
();
dlog
<<
LINFO
<<
"obj1: "
<<
obj1
;
dlog
<<
LINFO
<<
"obj2: "
<<
obj2
;
dlog
<<
LINFO
<<
"obj3: "
<<
obj3
;
dlog
<<
LINFO
<<
"obj4: "
<<
obj4
;
dlog
<<
LINFO
<<
"obj5: "
<<
obj5
;
DLIB_TEST
(
std
::
abs
(
obj1
-
obj2
)
<
1e-2
);
DLIB_TEST
(
std
::
abs
(
obj1
-
obj3
)
<
1e-2
);
DLIB_TEST
(
std
::
abs
(
obj1
-
obj4
)
<
1e-2
);
DLIB_TEST
(
std
::
abs
(
obj1
-
obj5
)
<
1e-2
);
dlog
<<
LINFO
<<
"weight error: "
<<
max
(
abs
(
df1
.
weights
-
df2
.
weights
));
dlog
<<
LINFO
<<
"weight error: "
<<
max
(
abs
(
df1
.
weights
-
df3
.
weights
));
dlog
<<
LINFO
<<
"weight error: "
<<
max
(
abs
(
df1
.
weights
-
df4
.
weights
));
dlog
<<
LINFO
<<
"weight error: "
<<
max
(
abs
(
df1
.
weights
-
df5
.
weights
));
DLIB_TEST
(
max
(
abs
(
df1
.
weights
-
df2
.
weights
))
<
1e-2
);
DLIB_TEST
(
max
(
abs
(
df1
.
weights
-
df3
.
weights
))
<
1e-2
);
DLIB_TEST
(
max
(
abs
(
df1
.
weights
-
df4
.
weights
))
<
1e-2
);
DLIB_TEST
(
max
(
abs
(
df1
.
weights
-
df5
.
weights
))
<
1e-2
);
dlog
<<
LINFO
<<
"b error: "
<<
max
(
abs
(
df1
.
b
-
df2
.
b
));
dlog
<<
LINFO
<<
"b error: "
<<
max
(
abs
(
df1
.
b
-
df3
.
b
));
dlog
<<
LINFO
<<
"b error: "
<<
max
(
abs
(
df1
.
b
-
df4
.
b
));
dlog
<<
LINFO
<<
"b error: "
<<
max
(
abs
(
df1
.
b
-
df5
.
b
));
DLIB_TEST
(
max
(
abs
(
df1
.
b
-
df2
.
b
))
<
1e-2
);
DLIB_TEST
(
max
(
abs
(
df1
.
b
-
df3
.
b
))
<
1e-2
);
DLIB_TEST
(
max
(
abs
(
df1
.
b
-
df4
.
b
))
<
1e-2
);
DLIB_TEST
(
max
(
abs
(
df1
.
b
-
df5
.
b
))
<
1e-2
);
matrix
<
double
>
res
=
test_multiclass_decision_function
(
df1
,
samples
,
labels
);
dlog
<<
LINFO
<<
res
;
dlog
<<
LINFO
<<
"accuracy: "
<<
sum
(
diag
(
res
))
/
sum
(
res
);
DLIB_TEST
(
sum
(
diag
(
res
))
==
1000
);
res
=
test_multiclass_decision_function
(
df2
,
samples
,
labels
);
dlog
<<
LINFO
<<
res
;
dlog
<<
LINFO
<<
"accuracy: "
<<
sum
(
diag
(
res
))
/
sum
(
res
);
DLIB_TEST
(
sum
(
diag
(
res
))
==
1000
);
res
=
test_multiclass_decision_function
(
df3
,
samples
,
labels
);
dlog
<<
LINFO
<<
res
;
dlog
<<
LINFO
<<
"accuracy: "
<<
sum
(
diag
(
res
))
/
sum
(
res
);
DLIB_TEST
(
sum
(
diag
(
res
))
==
1000
);
res
=
test_multiclass_decision_function
(
df4
,
samples
,
labels
);
dlog
<<
LINFO
<<
res
;
dlog
<<
LINFO
<<
"accuracy: "
<<
sum
(
diag
(
res
))
/
sum
(
res
);
DLIB_TEST
(
sum
(
diag
(
res
))
==
1000
);
res
=
test_multiclass_decision_function
(
df5
,
samples
,
labels
);
dlog
<<
LINFO
<<
res
;
dlog
<<
LINFO
<<
"accuracy: "
<<
sum
(
diag
(
res
))
/
sum
(
res
);
DLIB_TEST
(
sum
(
diag
(
res
))
==
1000
);
}
}
a
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment