Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
8c03fbd6
Commit
8c03fbd6
authored
May 20, 2011
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added things to docs and also moved the structural svm stuff into the ML page.
parent
53e9e7d9
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
99 additions
and
66 deletions
+99
-66
index.xml
docs/docs/index.xml
+1
-1
ml.xml
docs/docs/ml.xml
+94
-0
optimization.xml
docs/docs/optimization.xml
+0
-63
term_index.xml
docs/docs/term_index.xml
+4
-2
No files found.
docs/docs/index.xml
View file @
8c03fbd6
...
@@ -133,7 +133,7 @@
...
@@ -133,7 +133,7 @@
<li>
General purpose
<a
href=
"ml.html#one_vs_one_trainer"
>
multiclass classification
</a>
tools
</li>
<li>
General purpose
<a
href=
"ml.html#one_vs_one_trainer"
>
multiclass classification
</a>
tools
</li>
<li>
A
<a
href=
"ml.html#svm_multiclass_linear_trainer"
>
Multiclass SVM
</a></li>
<li>
A
<a
href=
"ml.html#svm_multiclass_linear_trainer"
>
Multiclass SVM
</a></li>
<li>
A tool for solving the optimization problem associated with
<li>
A tool for solving the optimization problem associated with
<a
href=
"
optimization
.html#structural_svm_problem"
>
structural support vector machines
</a>
.
</li>
<a
href=
"
ml
.html#structural_svm_problem"
>
structural support vector machines
</a>
.
</li>
<li>
An online
<a
href=
"ml.html#krls"
>
kernel RLS regression
</a>
algorithm
</li>
<li>
An online
<a
href=
"ml.html#krls"
>
kernel RLS regression
</a>
algorithm
</li>
<li>
An online
<a
href=
"ml.html#svm_pegasos"
>
SVM classification
</a>
algorithm
</li>
<li>
An online
<a
href=
"ml.html#svm_pegasos"
>
SVM classification
</a>
algorithm
</li>
<li>
An online kernelized
<a
href=
"ml.html#kcentroid"
>
centroid estimator
</a>
/novelty detector
</li>
and
<li>
An online kernelized
<a
href=
"ml.html#kcentroid"
>
centroid estimator
</a>
/novelty detector
</li>
and
...
...
docs/docs/ml.xml
View file @
8c03fbd6
...
@@ -89,6 +89,13 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
...
@@ -89,6 +89,13 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<item>
rvm_regression_trainer
</item>
<item>
rvm_regression_trainer
</item>
<item>
rbf_network_trainer
</item>
<item>
rbf_network_trainer
</item>
</section>
</section>
<section>
<name>
Structured Prediction
</name>
<item>
structural_svm_problem
</item>
<item>
structural_svm_problem_threaded
</item>
<item>
svm_struct_controller_node
</item>
<item>
svm_struct_processing_node
</item>
</section>
<section>
<section>
<name>
Unsupervised
</name>
<name>
Unsupervised
</name>
<item>
kcentroid
</item>
<item>
kcentroid
</item>
...
@@ -2023,6 +2030,93 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
...
@@ -2023,6 +2030,93 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
</component>
</component>
<!-- ************************************************************************* -->
<component>
<name>
structural_svm_problem
</name>
<file>
dlib/svm.h
</file>
<spec_file
link=
"true"
>
dlib/svm/structural_svm_problem_abstract.h
</spec_file>
<description>
This object, when used with the
<a
href=
"optimization.html#oca"
>
oca
</a>
optimizer, is a tool
for solving the optimization problem associated
with a structural support vector machine. A structural SVM is a supervised
machine learning method for learning to predict complex outputs. This is
contrasted with a binary classifier which makes only simple yes/no predictions.
A structural SVM, on the other hand, can learn to predict outputs as complex
as entire parse trees. To do this, it learns a function F(x,y) which measures
how well a particular data sample x matches a label y. When used for prediction,
the best label for a new x is given by the y which maximizes F(x,y).
<p>
If you want to see example code that uses this object then take a look at
the implementation of the
<a
href=
"dlib/svm/svm_multiclass_linear_trainer.h.html"
>
svm_multiclass_linear_trainer
</a>
object.
</p>
<br/>
For an introduction to structured support vector machines you should consult
the following paper:
<blockquote>
Predicting Structured Objects with Support Vector Machines by
By Thorsten Joachims, Thomas Hofmann, Yisong Yue, and Chun-nam Yu
</blockquote>
For a more detailed discussion of the particular algorithm implemented by this
object see the following paper:
<blockquote>
T. Joachims, T. Finley, Chun-Nam Yu, Cutting-Plane Training of Structural SVMs,
Machine Learning, 77(1):27-59, 2009.
</blockquote>
Note that this object is essentially a tool for solving the 1-Slack structural
SVM with margin-rescaling. Specifically, see Algorithm 3 in the above referenced
paper.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
structural_svm_problem_threaded
</name>
<file>
dlib/svm_threaded.h
</file>
<spec_file
link=
"true"
>
dlib/svm/structural_svm_problem_threaded_abstract.h
</spec_file>
<description>
This is just a version of the
<a
href=
"#structural_svm_problem"
>
structural_svm_problem
</a>
which is capable of using multiple cores/threads at a time. You should use it if
you have a multi-core CPU and the separation oracle takes a long time to compute.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
svm_struct_controller_node
</name>
<file>
dlib/svm_threaded.h
</file>
<spec_file
link=
"true"
>
dlib/svm/structural_svm_distributed_abstract.h
</spec_file>
<description>
This object is a tool for distributing the work involved in solving a
<a
href=
"#structural_svm_problem"
>
structural_svm_problem
</a>
across many computers.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
svm_struct_processing_node
</name>
<file>
dlib/svm_threaded.h
</file>
<spec_file
link=
"true"
>
dlib/svm/structural_svm_distributed_abstract.h
</spec_file>
<description>
This object is a tool for distributing the work involved in solving a
<a
href=
"#structural_svm_problem"
>
structural_svm_problem
</a>
across many computers.
</description>
</component>
<!-- ************************************************************************* -->
<!-- ************************************************************************* -->
</components>
</components>
...
...
docs/docs/optimization.xml
View file @
8c03fbd6
...
@@ -44,8 +44,6 @@
...
@@ -44,8 +44,6 @@
<item>
solve_qp2_using_smo
</item>
<item>
solve_qp2_using_smo
</item>
<item>
solve_qp3_using_smo
</item>
<item>
solve_qp3_using_smo
</item>
<item>
oca
</item>
<item>
oca
</item>
<item>
structural_svm_problem
</item>
<item>
structural_svm_problem_threaded
</item>
<item>
solve_least_squares
</item>
<item>
solve_least_squares
</item>
<item>
solve_least_squares_lm
</item>
<item>
solve_least_squares_lm
</item>
<item>
solve_trust_region_subproblem
</item>
<item>
solve_trust_region_subproblem
</item>
...
@@ -681,67 +679,6 @@ subject to the following constraint:
...
@@ -681,67 +679,6 @@ subject to the following constraint:
</component>
</component>
<!-- ************************************************************************* -->
<component>
<name>
structural_svm_problem
</name>
<file>
dlib/svm.h
</file>
<spec_file
link=
"true"
>
dlib/svm/structural_svm_problem_abstract.h
</spec_file>
<description>
This object, when used with the
<a
href=
"#oca"
>
oca
</a>
optimizer, is a tool
for solving the optimization problem associated
with a structural support vector machine. A structural SVM is a supervised
machine learning method for learning to predict complex outputs. This is
contrasted with a binary classifier which makes only simple yes/no predictions.
A structural SVM, on the other hand, can learn to predict outputs as complex
as entire parse trees. To do this, it learns a function F(x,y) which measures
how well a particular data sample x matches a label y. When used for prediction,
the best label for a new x is given by the y which maximizes F(x,y).
<p>
If you want to see example code that uses this object then take a look at
the implementation of the
<a
href=
"dlib/svm/svm_multiclass_linear_trainer.h.html"
>
svm_multiclass_linear_trainer
</a>
object.
</p>
<br/>
For an introduction to structured support vector machines you should consult
the following paper:
<blockquote>
Predicting Structured Objects with Support Vector Machines by
By Thorsten Joachims, Thomas Hofmann, Yisong Yue, and Chun-nam Yu
</blockquote>
For a more detailed discussion of the particular algorithm implemented by this
object see the following paper:
<blockquote>
T. Joachims, T. Finley, Chun-Nam Yu, Cutting-Plane Training of Structural SVMs,
Machine Learning, 77(1):27-59, 2009.
</blockquote>
Note that this object is essentially a tool for solving the 1-Slack structural
SVM with margin-rescaling. Specifically, see Algorithm 3 in the above referenced
paper.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
structural_svm_problem_threaded
</name>
<file>
dlib/svm_threaded.h
</file>
<spec_file
link=
"true"
>
dlib/svm/structural_svm_problem_threaded_abstract.h
</spec_file>
<description>
This is just a version of the
<a
href=
"#structural_svm_problem"
>
structural_svm_problem
</a>
which is capable of using multiple cores/threads at a time. You should use it if
you have a multi-core CPU and the separation oracle takes a long time to compute.
</description>
</component>
<!-- ************************************************************************* -->
<!-- ************************************************************************* -->
...
...
docs/docs/term_index.xml
View file @
8c03fbd6
...
@@ -32,8 +32,10 @@
...
@@ -32,8 +32,10 @@
<term
file=
"dlib/optimization/optimization_line_search_abstract.h.html"
name=
"optimize_single_variable_failure"
/>
<term
file=
"dlib/optimization/optimization_line_search_abstract.h.html"
name=
"optimize_single_variable_failure"
/>
<term
file=
"dlib/optimization/optimization_bobyqa_abstract.h.html"
name=
"bobyqa_failure"
/>
<term
file=
"dlib/optimization/optimization_bobyqa_abstract.h.html"
name=
"bobyqa_failure"
/>
<term
file=
"dlib/optimization/optimization_oca_abstract.h.html"
name=
"oca_problem"
/>
<term
file=
"dlib/optimization/optimization_oca_abstract.h.html"
name=
"oca_problem"
/>
<term
file=
"optimization.html"
name=
"structural_svm_problem"
/>
<term
file=
"ml.html"
name=
"structural_svm_problem"
/>
<term
file=
"optimization.html"
name=
"structural_svm_problem_threaded"
/>
<term
file=
"ml.html"
name=
"structural_svm_problem_threaded"
/>
<term
file=
"ml.html"
name=
"svm_struct_controller_node"
/>
<term
file=
"ml.html"
name=
"svm_struct_processing_node"
/>
<term
file=
"dlib/optimization/optimization_solve_qp2_using_smo_abstract.h.html"
name=
"invalid_nu_error"
/>
<term
file=
"dlib/optimization/optimization_solve_qp2_using_smo_abstract.h.html"
name=
"invalid_nu_error"
/>
<term
file=
"dlib/optimization/optimization_solve_qp2_using_smo_abstract.h.html"
name=
"maximum_nu"
/>
<term
file=
"dlib/optimization/optimization_solve_qp2_using_smo_abstract.h.html"
name=
"maximum_nu"
/>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment