Commit 94647651 authored by Davis King's avatar Davis King

updated docs

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%404007
parent 9711283f
......@@ -71,6 +71,7 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<item>empirical_kernel_map</item>
<item>kkmeans</item>
<item>svm_nu_trainer</item>
<item>svm_c_trainer</item>
<item>svm_c_linear_trainer</item>
<item>svm_c_ekm_trainer</item>
<item>rvm_trainer</item>
......@@ -918,7 +919,6 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<!-- ************************************************************************* -->
<component>
<name>svm_nu_trainer</name>
<file>dlib/svm.h</file>
......@@ -926,6 +926,7 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<description>
<p>
Trains a nu support vector classifier and outputs a <a href="#decision_function">decision_function</a>.
It is implemented using the <a href="optimization.html#solve_qp2_using_smo">SMO</a> algorithm.
</p>
The implementation of the nu-svm training algorithm used by this library is based
on the following excellent papers:
......@@ -943,6 +944,28 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
</component>
<!-- ************************************************************************* -->
<component>
<name>svm_c_trainer</name>
<file>dlib/svm.h</file>
<spec_file link="true">dlib/svm/svm_c_trainer_abstract.h</spec_file>
<description>
<p>
Trains a C support vector classifier and outputs a <a href="#decision_function">decision_function</a>.
It is implemented using the <a href="optimization.html#solve_qp3_using_smo">SMO</a> algorithm.
</p>
The implementation of the C-SVM training algorithm used by this library is based
on the following paper:
<ul>
<li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector
machines, 2001. Software available at
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
</ul>
</description>
</component>
<!-- ************************************************************************* -->
<component>
......
......@@ -32,6 +32,7 @@
<item>find_min_bobyqa</item>
<item>solve_qp_using_smo</item>
<item>solve_qp2_using_smo</item>
<item>solve_qp3_using_smo</item>
<item>oca</item>
<item>find_max</item>
<item>find_max_single_variable</item>
......@@ -388,6 +389,37 @@ subject to the following constraint:
</component>
<!-- ************************************************************************* -->
<component>
<name>solve_qp3_using_smo</name>
<file>dlib/optimization.h</file>
<spec_file link="true">dlib/optimization/optimization_solve_qp3_using_smo_abstract.h</spec_file>
<description>
This function solves the following quadratic program:
<pre>
Minimize: f(alpha) == 0.5*trans(alpha)*Q*alpha + trans(p)*alpha
subject to the following constraints:
for all i such that y(i) == +1: 0 &lt;= alpha(i) &lt;= Cp
for all i such that y(i) == -1: 0 &lt;= alpha(i) &lt;= Cn
trans(y)*alpha == B
Where all elements of y must be equal to +1 or -1 and f is convex.
This means that Q should be symmetric and positive-semidefinite.
</pre>
<br/>
This object implements the strategy used by the LIBSVM tool. The following paper
can be consulted for additional details:
<ul>
<li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector
machines, 2001. Software available at
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
</ul>
</description>
</component>
<!-- ************************************************************************* -->
<component>
......
......@@ -52,6 +52,7 @@
<term file="optimization.html" name="find_min_bobyqa"/>
<term file="optimization.html" name="solve_qp_using_smo"/>
<term file="optimization.html" name="solve_qp2_using_smo"/>
<term file="optimization.html" name="solve_qp3_using_smo"/>
<term file="optimization.html" name="oca"/>
<term link="optimization.html#find_min_bobyqa" name="BOBYQA"/>
<term file="optimization.html" name="find_max"/>
......@@ -164,6 +165,7 @@
<term file="ml.html" name="simplify_linear_decision_function"/>
<term file="ml.html" name="is_binary_classification_problem"/>
<term file="ml.html" name="svm_nu_trainer"/>
<term file="ml.html" name="svm_c_trainer"/>
<term file="ml.html" name="svm_c_linear_trainer"/>
<term file="ml.html" name="svm_c_ekm_trainer"/>
<term file="ml.html" name="rvm_trainer"/>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment