Commit 96fa972a authored by Davis King's avatar Davis King

Added the segment_image() routine.

parent 223a82d1
......@@ -14,6 +14,7 @@
#include "image_transforms/image_pyramid.h"
#include "image_transforms/label_connected_blobs.h"
#include "image_transforms/randomly_color_image.h"
#include "image_transforms/segment_image.h"
#endif // DLIB_IMAGE_TRANSFORMs_
// Copyright (C) 2011 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_SEGMENT_ImAGE_H__
#define DLIB_SEGMENT_ImAGE_H__
#include "segment_image_abstract.h"
#include "../algs.h"
#include <vector>
#include "../geometry.h"
#include "../disjoint_subsets.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
namespace impl
{
struct graph_image_segmentation_data
{
graph_image_segmentation_data() : component_size(1), internal_diff(0) {}
unsigned long component_size;
unsigned short internal_diff;
};
template <typename T>
inline T edge_diff(
const T& a,
const T& b
)
{
if (a > b)
return a - b;
else
return b - a;
}
struct segment_image_edge_data
{
segment_image_edge_data (){}
segment_image_edge_data (
const rectangle& rect,
const point& p1,
const point& p2,
const unsigned short& diff_
) :
idx1(p1.y()*rect.width() + p1.x()),
idx2(p2.y()*rect.width() + p2.x()),
diff(diff_)
{}
unsigned long idx1;
unsigned long idx2;
unsigned short diff;
};
}
// ----------------------------------------------------------------------------------------
template <
typename in_image_type,
typename out_image_type
>
void segment_image (
const in_image_type& in_img,
out_image_type& out_img,
const unsigned long k = 200,
const unsigned long min_diff = 0
)
{
using namespace dlib::impl;
typedef typename in_image_type::type ptype;
// make sure requires clause is not broken
DLIB_ASSERT(is_same_object(in_img, out_img) == false,
"\t void segment_image()"
<< "\n\t The input images can't be the same object."
<< "\n\t this: " << this
);
COMPILE_TIME_ASSERT(is_unsigned_type<ptype>::value && sizeof(ptype) <= 2);
COMPILE_TIME_ASSERT(is_unsigned_type<typename out_image_type::type>::value);
out_img.set_size(in_img.nr(), in_img.nc());
// don't bother doing anything if the image is too small
if (in_img.nr() < 2 || in_img.nc() < 2)
{
assign_all_pixels(out_img,0);
return;
}
disjoint_subsets sets;
sets.set_size(in_img.size());
std::vector<graph_image_segmentation_data> data(in_img.size());
std::vector<unsigned long> counts(std::numeric_limits<ptype>::max()+1, 0);
border_enumerator be(get_rect(in_img), 1);
// we are going to do a radix sort on the edge weights. So the first step
// is to accumulate them into count.
const rectangle area = get_rect(in_img);
while (be.move_next())
{
const long r = be.element().y();
const long c = be.element().x();
const ptype pix = in_img[r][c];
if (area.contains(c-1,r)) counts[edge_diff(pix, in_img[r ][c-1])] += 1;
if (area.contains(c+1,r)) counts[edge_diff(pix, in_img[r ][c+1])] += 1;
if (area.contains(c-1,r-1)) counts[edge_diff(pix, in_img[r-1][c-1])] += 1;
if (area.contains(c ,r-1)) counts[edge_diff(pix, in_img[r-1][c ])] += 1;
if (area.contains(c+1,r-1)) counts[edge_diff(pix, in_img[r-1][c+1])] += 1;
if (area.contains(c-1,r+1)) counts[edge_diff(pix, in_img[r+1][c-1])] += 1;
if (area.contains(c ,r+1)) counts[edge_diff(pix, in_img[r+1][c ])] += 1;
if (area.contains(c+1,r+1)) counts[edge_diff(pix, in_img[r+1][c+1])] += 1;
}
for (long r = 1; r+1 < in_img.nr(); ++r)
{
for (long c = 1; c+1 < in_img.nc(); ++c)
{
const ptype pix = in_img[r][c];
counts[edge_diff(pix, in_img[r ][c-1])] += 1;
counts[edge_diff(pix, in_img[r ][c+1])] += 1;
counts[edge_diff(pix, in_img[r-1][c-1])] += 1;
counts[edge_diff(pix, in_img[r-1][c ])] += 1;
counts[edge_diff(pix, in_img[r-1][c+1])] += 1;
counts[edge_diff(pix, in_img[r+1][c-1])] += 1;
counts[edge_diff(pix, in_img[r+1][c ])] += 1;
counts[edge_diff(pix, in_img[r+1][c+1])] += 1;
}
}
const unsigned long num_edges = shrink_rect(area,1).area()*8 + in_img.nr()*2*5 - 8 + (in_img.nc()-2)*2*5;
std::vector<segment_image_edge_data> sorted_edges(num_edges);
// integrate counts. The idea is to have sorted_edges[counts[i]] be the location that edges
// with an edge_diff of i go. So counts[0] == 0, counts[1] == number of 0 edge diff edges, etc.
unsigned long prev = counts[0];
for (unsigned long i = 1; i < counts.size(); ++i)
{
const unsigned long temp = counts[i];
counts[i] += counts[i-1];
counts[i-1] -= prev;
prev = temp;
}
counts[counts.size()-1] -= prev;
// now build a sorted list of all the edges
be.reset();
while(be.move_next())
{
const long r = be.element().y();
const long c = be.element().x();
const point p(c,r);
const ptype pix = in_img[r][c];
if (area.contains(c-1,r))
{
const ptype diff = edge_diff(pix, in_img[r ][c-1]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c-1,r),diff);
}
if (area.contains(c+1,r))
{
const ptype diff = edge_diff(pix, in_img[r ][c+1]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c+1,r),diff);
}
if (area.contains(c-1,r-1))
{
const ptype diff = edge_diff(pix, in_img[r-1][c-1]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c-1,r-1),diff);
}
if (area.contains(c ,r-1))
{
const ptype diff = edge_diff(pix, in_img[r-1][c ]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c ,r-1),diff);
}
if (area.contains(c+1,r-1))
{
const ptype diff = edge_diff(pix, in_img[r-1][c+1]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c+1,r-1),diff);
}
if (area.contains(c-1,r+1))
{
const ptype diff = edge_diff(pix, in_img[r+1][c-1]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c-1,r+1),diff);
}
if (area.contains(c ,r+1))
{
const ptype diff = edge_diff(pix, in_img[r+1][c ]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c ,r+1),diff);
}
if (area.contains(c+1,r+1))
{
const ptype diff = edge_diff(pix, in_img[r+1][c+1]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c+1,r+1),diff);
}
}
// same thing as the above loop but now we do it on the interior of the image and therefore
// don't have to include the boundary checking if statements used above.
for (long r = 1; r+1 < in_img.nr(); ++r)
{
for (long c = 1; c+1 < in_img.nc(); ++c)
{
const point p(c,r);
const ptype pix = in_img[r][c];
ptype diff;
diff = edge_diff(pix, in_img[r ][c-1]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c-1,r),diff);
diff = edge_diff(pix, in_img[r ][c+1]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c+1,r),diff);
diff = edge_diff(pix, in_img[r-1][c-1]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c-1,r-1),diff);
diff = edge_diff(pix, in_img[r-1][c ]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c ,r-1),diff);
diff = edge_diff(pix, in_img[r-1][c+1]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c+1,r-1),diff);
diff = edge_diff(pix, in_img[r+1][c-1]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c-1,r+1),diff);
diff = edge_diff(pix, in_img[r+1][c ]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c ,r+1),diff);
diff = edge_diff(pix, in_img[r+1][c+1]);
sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c+1,r+1),diff);
}
}
// now start connecting blobs together to make a minimum spanning tree.
for (unsigned long i = 0; i < sorted_edges.size(); ++i)
{
const unsigned long idx1 = sorted_edges[i].idx1;
const unsigned long idx2 = sorted_edges[i].idx2;
unsigned long set1 = sets.find_set(idx1);
unsigned long set2 = sets.find_set(idx2);
if (set1 != set2)
{
const ptype diff = sorted_edges[i].diff;
const ptype tau1 = k/data[set1].component_size;
const ptype tau2 = k/data[set2].component_size;
const ptype mint = std::min(data[set1].internal_diff + tau1,
data[set2].internal_diff + tau2);
if (diff <= std::max<ptype>(mint,min_diff))
{
const unsigned long new_set = sets.merge_sets(set1, set2);
data[new_set].component_size = data[set1].component_size + data[set2].component_size;
data[new_set].internal_diff = diff;
}
}
}
unsigned long idx = 0;
for (long r = 0; r < out_img.nr(); ++r)
{
for (long c = 0; c < out_img.nc(); ++c)
{
out_img[r][c] = sets.find_set(idx++);
}
}
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_SEGMENT_ImAGE_H__
// Copyright (C) 2011 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_SEGMENT_ImAGE_ABSTRACT_H__
#ifdef DLIB_SEGMENT_ImAGE_ABSTRACT_H__
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename in_image_type,
typename out_image_type
>
void segment_image (
const in_image_type& in_img,
out_image_type& out_img,
const unsigned long k = 200,
const unsigned long min_diff = 0
);
/*!
requires
- in_image_type == is an implementation of array2d/array2d_kernel_abstract.h
- out_image_type == is an implementation of array2d/array2d_kernel_abstract.h
- image_type::type == an unsigned 8-bit or 16bit integer type.
- image_type::type == unsigned integer type
- is_same_object(in_img, out_img) == false
ensures
- Attempts to segment in_img into regions which have some visual consistency to them.
In particular, this function implements the algorithm described in the paper:
Efficient Graph-Based Image Segmentation by Felzenszwalb and Huttenlocher.
- #out_img.nr() == in_img.nr()
- #out_img.nc() == in_img.nc()
- for all valid r and c:
- #out_img[r][c] == an integer value indicating the identity of the segment
containing the pixel in_img[r][c].
- The k parameter is a measure used to influence how large the segment regions will
be. Larger k generally results in larger segments being produced. For a deeper
discussion of the k parameter you should consult the above referenced paper.
- Any neighboring segments with an edge between them with a pixel difference <= min_diff
will always be merged. So making min_diff bigger makes this algorithm more eager
to merge neighboring segments.
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_SEGMENT_ImAGE_ABSTRACT_H__
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment