Commit 99bbe516 authored by Davis King's avatar Davis King

updated docs

parent 36cf4a9b
......@@ -141,7 +141,7 @@
<li>A kernelized <a href="ml.html#kkmeans">k-means</a> clustering algorithm</li>
<li><a href="ml.html#rbf_network_trainer">Radial Basis Function Networks</a></li>
<li><a href="ml.html#mlp">Multi layer perceptrons</a> </li>
<li><a href="ml.html#structural_sequence_labeling_trainer">Sequence labeling</a> </li>
<li>Tools for <a href="ml.html#sequence_labeler">sequence labeling</a> </li>
</ul>
</li>
......
......@@ -1309,8 +1309,17 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<file>dlib/svm.h</file>
<spec_file link="true">dlib/svm/sequence_labeler_abstract.h</spec_file>
<description>
This object is a tool for labeling each element of a sequence with
a discrete label.
This object is a tool for doing sequence labeling. In particular,
it is capable of representing sequence labeling models such as
those produced by Hidden Markov SVMs or Conditional Random fields.
See the following papers for an introduction to these techniques:
<blockquote>
Hidden Markov Support Vector Machines by
Y. Altun, I. Tsochantaridis, T. Hofmann
<br/>
Shallow Parsing with Conditional Random Fields by
Fei Sha and Fernando Pereira
</blockquote>
</description>
</component>
......@@ -2240,13 +2249,21 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<file>dlib/svm_threaded.h</file>
<spec_file link="true">dlib/svm/structural_svm_sequence_labeling_problem_abstract.h</spec_file>
<description>
This object is a tool for learning the parameter vector needed to use
This object is a tool for learning the weight vector needed to use
a <a href="#sequence_labeler">sequence_labeler</a> object.
<p>
It learns the parameter vector by formulating the problem as a <a href="#structural_svm_problem">structural
SVM problem</a>.
</p>
It learns the parameter vector by formulating the problem as a
<a href="#structural_svm_problem">structural SVM problem</a>.
The general approach is discussed in the paper:
<blockquote>
Hidden Markov Support Vector Machines by
Y. Altun, I. Tsochantaridis, T. Hofmann
</blockquote>
While the particular optimization strategy used is the method from:
<blockquote>
T. Joachims, T. Finley, Chun-Nam Yu, Cutting-Plane Training of
Structural SVMs, Machine Learning, 77(1):27-59, 2009.
</blockquote>
</description>
</component>
......@@ -2281,7 +2298,10 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<file>dlib/svm_threaded.h</file>
<spec_file link="true">dlib/svm/structural_sequence_labeling_trainer_abstract.h</spec_file>
<description>
This object is a tool for learning to do sequence labeling.
This object is a tool for learning to do sequence labeling based
on a set of training data. The training procedure produces a
<a href="#sequence_labeler">sequence_labeler</a> object which can
be use to predict the labels of new data sequences.
<p>
Note that this is just a convenience wrapper around the
<a href="#structural_svm_sequence_labeling_problem">structural_svm_sequence_labeling_problem</a>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment