Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
99bbe516
Commit
99bbe516
authored
Nov 02, 2011
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
updated docs
parent
36cf4a9b
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
29 additions
and
9 deletions
+29
-9
index.xml
docs/docs/index.xml
+1
-1
ml.xml
docs/docs/ml.xml
+28
-8
No files found.
docs/docs/index.xml
View file @
99bbe516
...
...
@@ -141,7 +141,7 @@
<li>
A kernelized
<a
href=
"ml.html#kkmeans"
>
k-means
</a>
clustering algorithm
</li>
<li><a
href=
"ml.html#rbf_network_trainer"
>
Radial Basis Function Networks
</a></li>
<li><a
href=
"ml.html#mlp"
>
Multi layer perceptrons
</a>
</li>
<li>
<a
href=
"ml.html#structural_sequence_labeling_trainer"
>
S
equence labeling
</a>
</li>
<li>
Tools for
<a
href=
"ml.html#sequence_labeler"
>
s
equence labeling
</a>
</li>
</ul>
</li>
...
...
docs/docs/ml.xml
View file @
99bbe516
...
...
@@ -1309,8 +1309,17 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<file>
dlib/svm.h
</file>
<spec_file
link=
"true"
>
dlib/svm/sequence_labeler_abstract.h
</spec_file>
<description>
This object is a tool for labeling each element of a sequence with
a discrete label.
This object is a tool for doing sequence labeling. In particular,
it is capable of representing sequence labeling models such as
those produced by Hidden Markov SVMs or Conditional Random fields.
See the following papers for an introduction to these techniques:
<blockquote>
Hidden Markov Support Vector Machines by
Y. Altun, I. Tsochantaridis, T. Hofmann
<br/>
Shallow Parsing with Conditional Random Fields by
Fei Sha and Fernando Pereira
</blockquote>
</description>
</component>
...
...
@@ -2240,13 +2249,21 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<file>
dlib/svm_threaded.h
</file>
<spec_file
link=
"true"
>
dlib/svm/structural_svm_sequence_labeling_problem_abstract.h
</spec_file>
<description>
This object is a tool for learning the parameter
vector needed to use
This object is a tool for learning the weight
vector needed to use
a
<a
href=
"#sequence_labeler"
>
sequence_labeler
</a>
object.
<p>
It learns the parameter vector by formulating the problem as a
<a
href=
"#structural_svm_problem"
>
structural
SVM problem
</a>
.
</p>
It learns the parameter vector by formulating the problem as a
<a
href=
"#structural_svm_problem"
>
structural SVM problem
</a>
.
The general approach is discussed in the paper:
<blockquote>
Hidden Markov Support Vector Machines by
Y. Altun, I. Tsochantaridis, T. Hofmann
</blockquote>
While the particular optimization strategy used is the method from:
<blockquote>
T. Joachims, T. Finley, Chun-Nam Yu, Cutting-Plane Training of
Structural SVMs, Machine Learning, 77(1):27-59, 2009.
</blockquote>
</description>
</component>
...
...
@@ -2281,7 +2298,10 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<file>
dlib/svm_threaded.h
</file>
<spec_file
link=
"true"
>
dlib/svm/structural_sequence_labeling_trainer_abstract.h
</spec_file>
<description>
This object is a tool for learning to do sequence labeling.
This object is a tool for learning to do sequence labeling based
on a set of training data. The training procedure produces a
<a
href=
"#sequence_labeler"
>
sequence_labeler
</a>
object which can
be use to predict the labels of new data sequences.
<p>
Note that this is just a convenience wrapper around the
<a
href=
"#structural_svm_sequence_labeling_problem"
>
structural_svm_sequence_labeling_problem
</a>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment